login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A178965
a(n) = numerator of Sum_{k>=1} floor(n/k)/2^k.
1
0, 1, 5, 15, 43, 103, 263, 591, 1391, 3103, 7007, 15039, 33983, 72063, 156543, 334591, 722687, 1510911, 3255807, 6773759, 14433279, 30193663, 63535103, 131264511, 278589439, 575004671, 1200349183, 2484846591, 5189910527, 10648256511, 22287450111, 45648642047
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{i=1..n} 2^(n-i)*floor(n/i). - Ridouane Oudra, Jul 30 2019
EXAMPLE
a(3)=15 because Sum_{k>=1} floor(3/k)/2^k = 15/8.
MAPLE
seq(add(2^(n-i)*floor(n/i), i=1..n), n=0..60); # Ridouane Oudra, Jul 30 2019
MATHEMATICA
Table[Numerator[Sum[Floor[n/k]/2^k, {k, 1, Infinity}]], {n, 0, 25}]
PROG
(Magma) [0] cat [&+[2^(n-i)*Floor(n/i):i in [1..n]]:n in [1..25]]; // Marius A. Burtea, Jul 30 2019
(PARI) a(n) = numerator(sum(k=1, n, floor(n/k)/2^k)); \\ Jinyuan Wang, Jul 31 2019
CROSSREFS
Sequence in context: A111295 A200760 A032193 * A005665 A025471 A064453
KEYWORD
nonn,frac
AUTHOR
STATUS
approved