login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of Sum_{k>=1} floor(n/k)/2^k.
1

%I #20 Sep 08 2022 08:45:54

%S 0,1,5,15,43,103,263,591,1391,3103,7007,15039,33983,72063,156543,

%T 334591,722687,1510911,3255807,6773759,14433279,30193663,63535103,

%U 131264511,278589439,575004671,1200349183,2484846591,5189910527,10648256511,22287450111,45648642047

%N a(n) = numerator of Sum_{k>=1} floor(n/k)/2^k.

%H Jinyuan Wang, <a href="/A178965/b178965.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{i=1..n} 2^(n-i)*floor(n/i). - _Ridouane Oudra_, Jul 30 2019

%e a(3)=15 because Sum_{k>=1} floor(3/k)/2^k = 15/8.

%p seq(add(2^(n-i)*floor(n/i), i=1..n), n=0..60); # _Ridouane Oudra_, Jul 30 2019

%t Table[Numerator[Sum[Floor[n/k]/2^k, {k, 1, Infinity}]], {n, 0, 25}]

%o (Magma) [0] cat [&+[2^(n-i)*Floor(n/i):i in [1..n]]:n in [1..25]]; // _Marius A. Burtea_, Jul 30 2019

%o (PARI) a(n) = numerator(sum(k=1,n,floor(n/k)/2^k)); \\ _Jinyuan Wang_, Jul 31 2019

%K nonn,frac

%O 0,3

%A _Vladimir Reshetnikov_, Dec 31 2010