OFFSET
1,2
COMMENTS
Pi(n) = number of primes <= n (see A000720).
Conjecture: For each n there is at least one prime p such that 2*a(n) < p < 2*a(n+1). From the conjecture follows that the prime gaps g(n) = prime(n+1) - prime(n) = O(sqrt(prime(n)/log(prime(n)))). - Thomas Ordowski, Aug 12 2012
a(n) ~ n^2/log n. - Thomas Ordowski, Aug 12 2012
Number of primes that are obtained when listing all reduced fractions i/j with 1<=i,j<=n. - Michel Marcus, Sep 09 2015
FORMULA
a(n) = n*A000720(n).
G.f.: x*f'(x), where f(x) = Sum_{k>=1} x^prime(k)/(1 - x). - Ilya Gutkovskiy, Apr 10 2017
EXAMPLE
a(7) = 28 because there are four primes less than or equal to 7 (namely 2, 3, 5, 7) and 7 * 4 = 28.
MATHEMATICA
Table[n Pi[n], {n, 60}] (* Alonso del Arte, Aug 14 2012 *)
PROG
(PARI) g(n) = for(x=1, n, y=x*primepi(x); print1(y", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Apr 23 2007
STATUS
approved