|
|
A128912
|
|
Numbers m of the form (sum of digits of m)^k, k > 1.
|
|
1
|
|
|
0, 1, 81, 512, 2401, 4913, 5832, 17576, 19683, 234256, 390625, 614656, 1679616, 17210368, 34012224, 52521875, 60466176, 205962976, 612220032, 8303765625, 10460353203, 24794911296, 27512614111, 52523350144, 68719476736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Perfect powers m > 1 such that the sum of the digits of m equals one of its nontrivial roots.
Essentially a duplicate of A023106, where numbers 2 through 9 are allowed as solutions for k=1.
|
|
LINKS
|
|
|
EXAMPLE
|
234256 = 22^4 and 2+3+4+2+5+6 = 22, hence 234256 is a term.
390625 = 25^4 and 3+9+0+6+2+5 = 25, hence 390625 is a term.
|
|
PROG
|
(PARI) {m=10^5; z=10^11; v=[]; for(n=0, m, k=2; while((p=n^k)<=z, s=sumdigits(p); if(n==s, v=concat(v, p)); k++)); v=vecsort(v); print(v)} \\ Klaus Brockhaus, Apr 24 2007, edited by M. F. Hasler, Apr 14 2015
(PARI) is(n)=ispower(n)&&(1<s=sumdigits(n))&&n==s^round(log(n)/log(s))||n<2 \\ M. F. Hasler, Apr 14 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Definition simplified and initial terms 0, 1 added by M. F. Hasler, Apr 14 2015
|
|
STATUS
|
approved
|
|
|
|