OFFSET
0,32
COMMENTS
P_n(x) appears to have degree A035106(n).
LINKS
A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp. See Identity 3-14, p. 25.
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
EXAMPLE
Triangle begins:
1
1
1,0,1
1,0,1,1
1,0,1,1,1,0,1
1,0,1,1,1,1,1,1,1
1,0,1,1,1,1,2,1,2,1,1,0,1
1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1
1,0,1,1,1,1,2,2,3,2,3,2,3,2,3,2,2,1,1,0,1
MAPLE
P[0]:=1; P[1]:=1; d:=[0, 0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^n*P[n-2]);
lprint(seriestolist(series(P[n], q, M^2))); d:=[op(d), degree(P[n], q)]; od: d;
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Apr 24 2007
STATUS
approved