login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128915
Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^n*P_{n-2}(x).
5
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1
OFFSET
0,32
COMMENTS
P_n(x) appears to have degree A035106(n).
LINKS
A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp. See Identity 3-14, p. 25.
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
EXAMPLE
Triangle begins:
1
1
1,0,1
1,0,1,1
1,0,1,1,1,0,1
1,0,1,1,1,1,1,1,1
1,0,1,1,1,1,2,1,2,1,1,0,1
1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1
1,0,1,1,1,1,2,2,3,2,3,2,3,2,3,2,2,1,1,0,1
MAPLE
P[0]:=1; P[1]:=1; d:=[0, 0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^n*P[n-2]);
lprint(seriestolist(series(P[n], q, M^2))); d:=[op(d), degree(P[n], q)]; od: d;
CROSSREFS
Rows converge to A003114 (coefficients in expansion of the first Rogers-Ramanujan identities). Cf. A119469.
Rows converge to A003106. Cf. A127836, A119469.
Sequence in context: A037888 A052308 A116510 * A063995 A280737 A322305
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Apr 24 2007
STATUS
approved