The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128917 Pentagonal numbers (A000326) which are also centered pentagonal numbers (A005891). 2
 1, 51, 3151, 195301, 12105501, 750345751, 46509331051, 2882828179401, 178688837791801, 11075825114912251, 686522468286767751, 42553317208664688301, 2637619144468923906901, 163489833639864617539551, 10133732066527137363545251, 628127898291042651922266001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..558 S. C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine,  Vol. 84, No. 5, December 2011 Index entries for linear recurrences with constant coefficients, signature (63,-63,1). FORMULA Define x(n) + y(n)*sqrt(15) = (5+sqrt(15))*(4+sqrt(15))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+5*(s(n)^2-s(n))). From Richard Choulet, Sep 19 2007: (Start) We must solve 3*p^2-p=5*r^2+5*r+2, which gives X^2=15*Y^2+10 where X=6*p-1 and Y=2*r+1. Four other sequences are obtained at the same time: X is given by 5,35,275,2165,... with the recurrence a(n+2)=8*a(n+1)-a(n) and also a(n+1)=4*a(n)+(15*a(n)^2-150)^(1/2) (numbers such that 15*X^2-150 is a square). Y is given by 1,9,71,559,... with the recurrence a(n+2)=8*a(n+1)-a(n) and also a(n+1)=4*a(n)+(15*a(n)^2+10)^(1/2) (numbers such that 15*Y^2+10 is a square). p is given by 1,6,46,361,... with the recurrence a(n+2)=8*a(n+1)-a(n)-1 and also a(n+1)=4*a(n)-0.5+0.5*(60*a(n)^2-20*a(n)-15)^(1/2) (numbers such that 15*(6*p-1)^2-150 is a square). r is given by 0,4,35,279,... with the recurrence a(n+2)=8*a(n+1)-a(n)+3 and also a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+25)^(1/2) (numbers such that 15*(2*r+1)^2+10 is a square). a(n+2) = 62*a(n+1)-a(n)-10, a(n+1)=31*a(n)-5+(960*a(n)^2-320*a(n)-45)^(1/2). G.f.: ((z*(1-12*z+z^2)/((1-z)*(1-62*z+z^2)). (End) a(n) = 1/6+(5/48)*sqrt(15)*[31+8*sqrt(15)]^(n-1)-(5/48)*sqrt(15)*[31-8*sqrt(15)]^(n-1)+(5/12)*[31+8 *sqrt(15)]^(n-1)+(5/12)*[31-8*sqrt(15)]^(n-1), with n>=1. - Paolo P. Lava, Jul 15 2008 a(n) = 63*a(n-1)-63*a(n-2)+a(n-3). - Colin Barker, Jan 07 2015 EXAMPLE a(1)=51 because 51 is the fifth centered pentagonal number and the sixth pentagonal number. MAPLE CP := n -> 1+1/2*5*(n^2-n): N:=10: u:=4: v:=1: x:=5: y:=1: k_pcp:=: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+15*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp), CP(s)]: end do: k_pcp; PROG (PARI) Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-62*x+1)) + O(x^100)) \\ Colin Barker, Jan 07 2015 CROSSREFS Cf. A000326, A005891, A128917, A253654. Sequence in context: A267786 A267733 A238603 * A172742 A172821 A172868 Adjacent sequences:  A128914 A128915 A128916 * A128918 A128919 A128920 KEYWORD easy,nonn AUTHOR Steven Schlicker, Apr 24 2007 EXTENSIONS Edited by N. J. A. Sloane, Sep 25 2007 More terms from R. J. Mathar, Oct 31 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 6 05:47 EDT 2022. Contains 357261 sequences. (Running on oeis4.)