The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128919 Numbers simultaneously heptagonal and centered heptagonal. 2
1, 148, 21022, 2984983, 423846571, 60183228106, 8545594544488, 1213414242089197, 172296276782121493, 24464857888819162816, 3473837523935538998386 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
S. C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011, pp. 339-350.
FORMULA
x(n) + y(n)*sqrt(35) = (7+sqrt(35))*(6+sqrt(35))^n s(n) = (y(n)+1)/2 a(n) = (1/2)*(2+7*(s(n)^2-s(n))).
From Richard Choulet, Oct 01 2007: (Start)
a(n+2) = 142*a(n+1)-a(n)+7.
a(n+1) = 71*a(n)+3.5+1.5*(2240*a(n)^2+224*a(n)-63)^0.5.
G.f.: z*(1+5*z+z^2)/((1-z)*(1-142*z+z^2)). (End)
EXAMPLE
a(1)=148 because 148 is the seventh centered heptagonal number and the eighth heptagonal number.
MAPLE
CP := n -> 1+1/2*7*(n^2-n): N:=10: u:=6: v:=1: x:=7: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+35*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp), CP(s)]: end do: k_pcp;
MATHEMATICA
Nest[Append[#, 142Last[#]-#[[-2]]+7]&, {1, 148}, 20] (* Harvey P. Dale, Apr 17 2011 *)
CROSSREFS
Sequence in context: A035822 A221349 A178083 * A223740 A223723 A223787
KEYWORD
easy,nonn
AUTHOR
Steven Schlicker, Apr 24 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 16:46 EDT 2024. Contains 373432 sequences. (Running on oeis4.)