login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128909 3D version of A005670. The problem is to dissect an n X n X n cube into smaller integer cubes, the gcd of whose sides is 1, using the smallest number of cubes. The gcd condition exclude dissecting a 6 X 6 X 6 cube into eight 3 X 3 X 3 cubes. 0
1, 8, 20, 15, 50, 27, 71, 22, 39, 57, 125, 34 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

As far as I know, no term, (except trivial cases) has been proved optimal. Repeated dissection, as in the above example, shows that if the side is a composite number mn, a(mn) <= a(m) + a(n) - 1. It is an open problem to find a number mn for which a(mn) < a(m) + a(n) - 1. Dissecting a cube with side n into a cube with side n - 1 and several unit cubes gives a trivial bound: a(n) <= 3n^2 - 3n + 2. Dissecting a cube with side n = 2k + 1 into a cube with side k + 1, 7 with side k and several unit cubes gives another trivial bound: a(n) <= (9n^2 - 12n + 31) / 4.

REFERENCES

Ainley, Stephen, Mathematical Puzzles, Prentice Hall, New York, 1983. p. 81.

LINKS

Table of n, a(n) for n=1..12.

EXAMPLE

a(4)=15 because a 4 X 4 X 4 cube can be dissected into 8 2 X 2 X 2, one of which can be dissected into 8 1 X 1 X 1.

CROSSREFS

Cf. A005670.

Sequence in context: A081963 A208085 A334065 * A115147 A302241 A022700

Adjacent sequences:  A128906 A128907 A128908 * A128910 A128911 A128912

KEYWORD

hard,more,nonn

AUTHOR

Mauro Fiorentini, Apr 23 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 16:02 EDT 2021. Contains 348042 sequences. (Running on oeis4.)