login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*pi(n).
3

%I #27 Apr 10 2017 23:29:28

%S 0,2,6,8,15,18,28,32,36,40,55,60,78,84,90,96,119,126,152,160,168,176,

%T 207,216,225,234,243,252,290,300,341,352,363,374,385,396,444,456,468,

%U 480,533,546,602,616,630,644,705,720,735,750,765,780,848,864,880,896

%N a(n) = n*pi(n).

%C Pi(n) = number of primes <= n (see A000720).

%C Conjecture: For each n there is at least one prime p such that 2*a(n) < p < 2*a(n+1). From the conjecture follows that the prime gaps g(n) = prime(n+1) - prime(n) = O(sqrt(prime(n)/log(prime(n)))). - _Thomas Ordowski_, Aug 12 2012

%C a(n) ~ n^2/log n. - _Thomas Ordowski_, Aug 12 2012

%C Number of primes that are obtained when listing all reduced fractions i/j with 1<=i,j<=n. - _Michel Marcus_, Sep 09 2015

%F a(n) = n*A000720(n).

%F G.f.: x*f'(x), where f(x) = Sum_{k>=1} x^prime(k)/(1 - x). - _Ilya Gutkovskiy_, Apr 10 2017

%e a(7) = 28 because there are four primes less than or equal to 7 (namely 2, 3, 5, 7) and 7 * 4 = 28.

%t Table[n Pi[n], {n, 60}] (* _Alonso del Arte_, Aug 14 2012 *)

%o (PARI) g(n) = for(x=1,n,y=x*primepi(x);print1(y","))

%Y Cf. A000720, A128930.

%K easy,nonn

%O 1,2

%A _Cino Hilliard_, Apr 23 2007