Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 16 2021 21:18:55
%S 0,1,4,8,16,25,42,61,90,130,178,242,332,436,566,747,952,1210,1540,
%T 1926,2400,2994,3674,4506,5526,6708,8108,9808,11768,14080,16850,20022,
%U 23738,28128,33152,39015,45854,53662,62696,73166,85118,98826,114636,132586,153102
%N Convolution of A000203 and A000009.
%C Apart from initial zero this is the convolution of A340793 and A036469. - _Omar E. Pol_, Feb 16 2021
%H Vaclav Kotesovec, <a href="/A277029/b277029.txt">Table of n, a(n) for n = 0..10000</a>
%F G.f.: Sum_{j>=1} (j*x^j/(1-x^j))*Product_{k>=1} (1+x^k).
%F a(n) ~ 2*n*A000009(n) ~ exp(Pi*sqrt(n/3)) * n^(1/4) / (2*3^(1/4)).
%t Table[Sum[DivisorSigma[1, k] * PartitionsQ[n-k], {k,1,n}], {n,0,50}]
%t nmax = 50; CoefficientList[Series[Sum[j*x^j/(1-x^j), {j, 1, nmax}]*Product[1+x^k, {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A066186 (convolution of A000203 and A000041).
%Y Cf. A276432 (convolution of A000203 and A000219).
%Y Cf. A066189, A036469, A340793.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Sep 25 2016