login
A059403
Quarter-squared applied twice.
2
0, 0, 0, 1, 4, 9, 20, 36, 64, 100, 156, 225, 324, 441, 600, 784, 1024, 1296, 1640, 2025, 2500, 3025, 3660, 4356, 5184, 6084, 7140, 8281, 9604, 11025, 12656, 14400, 16384, 18496, 20880, 23409, 26244, 29241, 32580, 36100, 40000, 44100, 48620, 53361, 58564, 64009
OFFSET
0,5
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000 (first 501 terms from Harry J. Smith)
Index entries for linear recurrences with constant coefficients, signature (2, 1, -4, 2, 0, -2, 4, -1, -2, 1).
FORMULA
a(n) = floor(floor(n^2/4)^2/4) = A002620(A002620(n)).
a(4*n) = 4n^4; a(4*n+1) = n^2*(2*n+1)^2;
a(4*n+2) = 2*n*(n+1)*(2*n*(n+1)+1); a(4*n+3) = (n+1)^2*(2*n+1)^2.
a(2n) = A060494(2n); a(2n-1) = A060494(2n-1)-A011861(n).
G.f.: x^3*(1 + 2*x + 2*x^3 + x^4)/((1 - x)^5*(1 + x)^3*(1 + x^2)). - R. J. Mathar, Sep 09 2008
EXAMPLE
a(9)=100 since the ninth quarter-square is 20 and the twentieth quarter-square is 100.
MATHEMATICA
Floor[Floor[Range[0, 50]^2/4]^2/4] (* or *) LinearRecurrence[{2, 1, -4, 2, 0, -2, 4, -1, -2, 1}, {0, 0, 0, 1, 4, 9, 20, 36, 64, 100}, 50] (* Harvey P. Dale, Dec 13 2014 *)
PROG
(PARI) a(n) = { (n^2\4)^2\4 } \\ Harry J. Smith, Jun 26 2009
CROSSREFS
Cf. A008233 for an alternative approach.
Sequence in context: A164931 A066186 A346558 * A009909 A009910 A060494
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Mar 21 2001
STATUS
approved