

A059405


Numbers that are the product of their digits raised to positive integer powers.


5



1, 2, 3, 4, 5, 6, 7, 8, 9, 128, 135, 175, 384, 432, 672, 735, 1296, 1715, 6144, 6912, 13824, 18432, 23328, 34992, 82944, 93312, 131712, 248832, 442368, 1492992, 2239488, 2333772, 2612736, 3981312, 4128768, 4741632, 9289728, 12192768
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The second example suggests that a repeated digit must divide the number at least as many times as it occurs, i.e., "distinct [digits]" in the definition would give a different (super)set. What would be the additional terms?  M. F. Hasler, Jan 05 2020


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..120


EXAMPLE

a(17) = 1296 = (1)(2^2)(9)(6^2);
a(32) = 2333772 = (2)(3)(3)(3^3)(7)(7^3)(2).


PROG

(Haskell)
a059405 n = a059405_list !! (n1)
a059405_list = filter f a238985_list where
f x = all (== 0) (map (mod x) digs) && g x digs where
g z [] = z == 1
g z ds'@(d:ds) = r == 0 && (h z' ds'  g z' ds)
where (z', r) = divMod z d
h z [] = z == 1
h z ds'@(d:ds) = r == 0 && h z' ds'  g z ds
where (z', r) = divMod z d
digs = map (read . return) $ filter (/= '1') $ show x
 Reinhard Zumkeller, Apr 29 2015


CROSSREFS

Subsequence of A238985.
Sequence in context: A134810 A173689 A004871 * A191872 A280355 A001104
Adjacent sequences: A059402 A059403 A059404 * A059406 A059407 A059408


KEYWORD

base,nice,nonn


AUTHOR

Erich Friedman, Jan 29 2001


EXTENSIONS

More terms from Erich Friedman, Apr 01 2003
Offset changed by Reinhard Zumkeller, Apr 29 2015


STATUS

approved



