login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191872
a(n) is the smallest multiple of n such that the sum of the square of the decimal digits of a(n) is divisible by n.
0
1, 2, 3, 4, 5, 6, 7, 8, 9, 130, 1265, 60, 143, 154, 360, 48, 1071, 396, 133, 240, 693, 1386, 1817, 888, 50, 286, 999, 2408, 2552, 390, 372, 448, 1419, 2992, 315, 2268, 1295, 266, 3666, 480, 1148, 1344, 129, 11176, 360, 3818, 329, 8880, 2254, 550, 1071, 2444, 2597, 2268, 12485, 2688, 399, 2552, 12449, 111960, 549, 372, 693, 8000
OFFSET
1,2
EXAMPLE
a(11) =1265 because 11*115 = 1265 and 1^2+2^2+6^2+5^2 = 66 = 11*6.
MAPLE
with(numtheory):for n from 1 to 80 do:id:=0:for k from 1 to 1000000 while(id=0)
do :l:=length(k):n0:=k:s1:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q,
10):n0:=v :s1:=s1+u^2 :od: :if irem(k, n) =0 and irem(s1, n)=0 then id:=1:printf(`%d,
`, k):else fi:od: od:
MATHEMATICA
smn[n_]:=Module[{k=1}, While[Mod[Total[IntegerDigits[k n]^2], n]!=0, k++]; n k]; Array[smn, 70] (* Harvey P. Dale, Feb 13 2023 *)
PROG
(PARI) a(n)=my(s); forstep(k=n, 9e9, n, s=eval(Vec(Str(k))); if(sum(i=1, #s, s[i]^2)%n==0, return(k))) \\ Charles R Greathouse IV, Jun 20 2011
CROSSREFS
Sequence in context: A173689 A004871 A059405 * A280355 A001104 A151544
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Jun 18 2011
STATUS
approved