login
A280355
Numbers that are divisible by the sum of their digits and for which the sum of digits equals the product of digits.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 132, 312, 4112, 11133, 11313, 11331, 13113, 13131, 13311, 22112, 31113, 31131, 31311, 33111, 111216, 111612, 112116, 116112, 121116, 161112, 211116, 611112, 1111712, 11111232, 11112132, 11112312, 11113212, 11118112, 11121132, 11121312, 11123112, 11131212, 11132112
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Harshad Numbers
EXAMPLE
132 is in the sequence because 1 + 3 + 2 = 1*3*2 = 6 and 6 divides 132.
MATHEMATICA
Select[Range[11300000], Divisible[#1, (Plus @@ IntegerDigits[#1])] && (Plus @@ IntegerDigits[#1]) == (Times @@ IntegerDigits[#1]) &]
nQ[n_]:=With[{idn=IntegerDigits[n]}, Mod[n, Total[idn]]==0&&Total[idn]==Times@@idn]; Select[Range[112*10^5], nQ] (* Harvey P. Dale, Nov 02 2024 *)
PROG
(PARI) isok(n) = (d=digits(n)) && ((n % vecsum(d)) == 0) && (vecsum(d) == prod(k=1, #d, d[k])); \\ Michel Marcus, Jan 02 2017
CROSSREFS
Intersection of A005349 and A034710.
Cf. A038186.
Sequence in context: A004871 A059405 A191872 * A001104 A151544 A032561
KEYWORD
nonn,base,easy
AUTHOR
Ilya Gutkovskiy, Jan 01 2017
STATUS
approved