The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191875 Ordered sums 3*f+4*g, where f and g are Fibonacci numbers (A000045). 4
 7, 10, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 28, 29, 32, 35, 36, 38, 41, 43, 44, 47, 51, 55, 56, 58, 59, 61, 67, 71, 75, 76, 83, 87, 90, 91, 93, 95, 99, 106, 108, 110, 114, 115, 122, 123, 134, 139, 142, 145, 147, 151, 154, 160, 169, 173, 175, 177, 185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS MATHEMATICA c = 3; d = 4; f[n_] := Fibonacci[n]; g[n_] := c*f[n]; h[n_] := d*f[n]; t[i_, j_] := h[i] + g[j]; u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}]; v = Union[Flatten[u ]]    (* A191875 *) t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0] u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}]; v1 = Union[Flatten[u1 ]]  (* A191876: c*f(i)-d*f(j) *) g1[n_] := d*f[n]; h1[n_] := c*f[n]; t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0] u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}]; v2 = Union[Flatten[u2 ]]  (* A191877: d*f(i)-c*f(j) *) v3 = Union[v1, v2]        (* A191878*) Union[3*First[#]+4*Last[#]&/@Tuples[Fibonacci[Range[10]], 2]] (* Harvey P. Dale, Jun 05 2014 *) CROSSREFS Cf. A191876, A191877, A191878. Sequence in context: A278738 A060228 A190231 * A194418 A094764 A066468 Adjacent sequences:  A191872 A191873 A191874 * A191876 A191877 A191878 KEYWORD nonn AUTHOR Clark Kimberling, Jun 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 10:09 EDT 2022. Contains 353807 sequences. (Running on oeis4.)