|
|
A191871
|
|
a(n) = numerator(n^2 / 2^n).
|
|
6
|
|
|
0, 1, 1, 9, 1, 25, 9, 49, 1, 81, 25, 121, 9, 169, 49, 225, 1, 289, 81, 361, 25, 441, 121, 529, 9, 625, 169, 729, 49, 841, 225, 961, 1, 1089, 289, 1225, 81, 1369, 361, 1521, 25, 1681, 441, 1849, 121, 2025, 529, 2209, 9, 2401, 625, 2601, 169, 2809, 729, 3025
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
a(n+1) = largest odd divisor of A000290(n+1). - Jeremy Gardiner, Aug 25 2013
In binary, remove all trailing zeros, then square. - Ralf Stephan, Aug 26 2013
A fractal sequence. The odd-numbered elements give the odd squares A016754. If these elements are removed, the original sequence is recovered. - Jeremy Gardiner, Sep 14 2013
a(n+1) is the denominator of the population variance of the n-th row of Pascal's triangle. - Chai Wah Wu, Mar 25 2018
Multiplicative because A000265 is. - Andrew Howroyd, Jul 26 2018
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Index entries for sequences related to binary expansion of n
|
|
FORMULA
|
a(n) = A000265(n^2) = A000265(n)^2. - M. F. Hasler, Jun 19 2011
Recurrence: a(2n) = a(n), a(2n+1) = (2n+1)^2. - Ralf Stephan, Aug 26 2013
|
|
MAPLE
|
[seq(numer(n^2/2^n), n=0..60)]; # Muniru A Asiru, Mar 31 2018
|
|
MATHEMATICA
|
a[n_] := Numerator[n^2/2^n]; Table[a[n], {n, 0, 200, 2}]
|
|
PROG
|
(PARI) a(n)=(n>>valuation(n, 2))^2 \\ Charles R Greathouse IV & M. F. Hasler, Jun 19 2011
(Python)
from __future__ import division
def A191871(n):
while not n % 2:
n //= 2
return n**2 # Chai Wah Wu, Mar 25 2018
(GAP) List([0..60], n->NumeratorRat(n^2/2^n)); # Muniru A Asiru, Mar 31 2018
|
|
CROSSREFS
|
Cf. A000265, A000290, A016754.
Sequence in context: A205381 A237587 A328621 * A181318 A202006 A195278
Adjacent sequences: A191868 A191869 A191870 * A191872 A191873 A191874
|
|
KEYWORD
|
nonn,frac,easy,mult
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Jun 18 2011
|
|
STATUS
|
approved
|
|
|
|