The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191871 a(n) = numerator(n^2 / 2^n). 6
 0, 1, 1, 9, 1, 25, 9, 49, 1, 81, 25, 121, 9, 169, 49, 225, 1, 289, 81, 361, 25, 441, 121, 529, 9, 625, 169, 729, 49, 841, 225, 961, 1, 1089, 289, 1225, 81, 1369, 361, 1521, 25, 1681, 441, 1849, 121, 2025, 529, 2209, 9, 2401, 625, 2601, 169, 2809, 729, 3025 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n+1) = largest odd divisor of A000290(n+1). - Jeremy Gardiner, Aug 25 2013 In binary, remove all trailing zeros, then square. - Ralf Stephan, Aug 26 2013 A fractal sequence. The odd-numbered elements give the odd squares A016754. If these elements are removed, the original sequence is recovered. - Jeremy Gardiner, Sep 14 2013 a(n+1) is the denominator of the population variance of the n-th row of Pascal's triangle. - Chai Wah Wu, Mar 25 2018 Multiplicative because A000265 is. - Andrew Howroyd, Jul 26 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..5000 Index entries for sequences related to binary expansion of n. FORMULA a(n) = A000265(n^2) = A000265(n)^2. - M. F. Hasler, Jun 19 2011 Recurrence: a(2n) = a(n), a(2n+1) = (2n+1)^2. - Ralf Stephan, Aug 26 2013 From Amiram Eldar, Nov 28 2022: (Start) Multiplicative with a(2^e) = 1, and a(p^e) = p^(2*e) if p > 2. Sum_{k=1..n} a(k) ~ (4/21) * n^3. (End) Dirichlet g.f.: zeta(s-2)*(2^s-4)/(2^s-1). - Amiram Eldar, Jan 04 2023 MAPLE [seq(numer(n^2/2^n), n=0..60)]; # Muniru A Asiru, Mar 31 2018 MATHEMATICA a[n_] := Numerator[n^2/2^n]; Table[a[n], {n, 0, 200, 2}] PROG (PARI) a(n)=(n>>valuation(n, 2))^2 \\ Charles R Greathouse IV & M. F. Hasler, Jun 19 2011 (Python) from __future__ import division def A191871(n): while not n % 2: n //= 2 return n**2 # Chai Wah Wu, Mar 25 2018 (GAP) List([0..60], n->NumeratorRat(n^2/2^n)); # Muniru A Asiru, Mar 31 2018 CROSSREFS Cf. A000265, A000290, A016754. Sequence in context: A205381 A237587 A328621 * A181318 A202006 A195278 Adjacent sequences: A191868 A191869 A191870 * A191872 A191873 A191874 KEYWORD nonn,frac,easy,mult AUTHOR Vladimir Joseph Stephan Orlovsky, Jun 18 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 22:36 EDT 2024. Contains 372954 sequences. (Running on oeis4.)