login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173689
Numbers m such that the sum of square of factorial of decimal digits is square.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 122, 202, 212, 220, 221, 244, 424, 442, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 2222, 3333, 3444, 4344, 4434, 4443, 4444, 5555, 6666, 6677, 6767, 6776, 6888, 7667, 7676, 7766, 7777, 8688, 8868, 8886, 8888, 9999
OFFSET
1,3
COMMENTS
Let the decimal expansion of m = d(0)d(1)...d(p). Numbers such that Sum_{k=0..p} (d(k)!)^2 is square.
LINKS
EXAMPLE
a(16) = 244 is in the sequence because (2!)^2 + (4!)^2 + (4!)^2 = 1156 = 34^2.
MAPLE
with(numtheory):for n from 0 to 10000 do:l:=length(n):n0:=n:s:=0:for m from
1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s:=s+(u!)^2:od: q:=sqrt(s):if
floor(q)= q then printf(`%d, `, n):else fi:od:
MATHEMATICA
Select[Range[0, 10000], IntegerQ[Sqrt[Total[(IntegerDigits[#]!)^2]]]&] (* Harvey P. Dale, Dec 19 2011 *)
PROG
(Python)
from itertools import count, islice, combinations_with_replacement
from math import factorial
from sympy.ntheory.primetest import is_square
from sympy.utilities.iterables import multiset_permutations
def A173689_gen(): # generator of terms
yield 0
for l in count(0):
for i in range(1, 10):
fi = factorial(i)**2
yield from sorted(int(str(i)+''.join(map(str, k))) for j in combinations_with_replacement(range(10), l) for k in multiset_permutations(j) if is_square(fi+sum(map(lambda n:factorial(n)**2, j))))
A173689_list = list(islice(A173689_gen(), 50)) # Chai Wah Wu, Feb 23 2023
CROSSREFS
Sequence in context: A134853 A193407 A134810 * A004871 A059405 A191872
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Nov 25 2010
EXTENSIONS
Offset changed to 1 by Jinyuan Wang, Feb 26 2020
STATUS
approved