The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066966 Total sum of even parts in all partitions of n. 8
 0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A206436. - Omar E. Pol, Mar 17 2012 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA a(n) = 2*Sum_{k=1..floor{n/2)} sigma(k)*numbpart(n-2*k). a(n) = Sum_{k=0..n} k*A113686(n,k). - Emeric Deutsch, Feb 20 2006 G.f.: Sum_{j>=1} (2jx^(2j)/(1-x^(2j)))/Product_{j>=1}(1-x^j). - Emeric Deutsch, Feb 20 2006 a(n) = A066186(n) - A066967(n). - Omar E. Pol, Mar 10 2012 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018 EXAMPLE a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10. MAPLE g:=sum(2*j*x^(2*j)/(1-x^(2*j)), j=1..55)/product(1-x^j, j=1..55): gser:=series(g, x=0, 45): seq(coeff(gser, x^n), n=1..41); # Emeric Deutsch, Feb 20 2006 b:= proc(n, i) option remember; local f, g;       if n=0 or i=1 then [1, 0]     else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));          [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]       fi     end: a:= n-> b(n, n)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Mar 22 2012 MATHEMATICA max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *) Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *) PROG (PARI) a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014 CROSSREFS Cf. A000041, A000203, A066897, A066898, A113686. Sequence in context: A147801 A263053 A066965 * A132443 A048153 A015623 Adjacent sequences:  A066963 A066964 A066965 * A066967 A066968 A066969 KEYWORD nonn AUTHOR Vladeta Jovovic, Jan 26 2002 EXTENSIONS More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002 More terms from Emeric Deutsch, Feb 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 27 09:59 EST 2020. Contains 332304 sequences. (Running on oeis4.)