login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066966 Total sum of even parts in all partitions of n. 8
0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Partial sums of A206436. - Omar E. Pol, Mar 17 2012

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = 2*Sum_{k=1..floor{n/2)} sigma(k)*numbpart(n-2*k).

a(n) = Sum_{k=0..n} k*A113686(n,k). - Emeric Deutsch, Feb 20 2006

G.f.: Sum_{j>=1} (2jx^(2j)/(1-x^(2j)))/Product_{j>=1}(1-x^j). - Emeric Deutsch, Feb 20 2006

a(n) = A066186(n) - A066967(n). - Omar E. Pol, Mar 10 2012

a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018

EXAMPLE

a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.

MAPLE

g:=sum(2*j*x^(2*j)/(1-x^(2*j)), j=1..55)/product(1-x^j, j=1..55): gser:=series(g, x=0, 45): seq(coeff(gser, x^n), n=1..41);

# Emeric Deutsch, Feb 20 2006

b:= proc(n, i) option remember; local f, g;

      if n=0 or i=1 then [1, 0]

    else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));

         [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]

      fi

    end:

a:= n-> b(n, n)[2]:

seq(a(n), n=1..50);

# Alois P. Heinz, Mar 22 2012

MATHEMATICA

max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-Fran├žois Alcover, Jan 24 2014, after Emeric Deutsch *)

Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)

PROG

(PARI) a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014

CROSSREFS

Cf. A000041, A000203, A066897, A066898, A113686.

Sequence in context: A147801 A263053 A066965 * A132443 A048153 A015623

Adjacent sequences:  A066963 A066964 A066965 * A066967 A066968 A066969

KEYWORD

nonn

AUTHOR

Vladeta Jovovic, Jan 26 2002

EXTENSIONS

More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002

More terms from Emeric Deutsch, Feb 20 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 09:59 EST 2020. Contains 332304 sequences. (Running on oeis4.)