login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A206436
Total sum of even parts in the last section of the set of partitions of n.
5
0, 2, 0, 8, 2, 18, 10, 42, 28, 80, 70, 162, 148, 290, 300, 530, 562, 918, 1020, 1570, 1780, 2602, 3022, 4286, 4992, 6858, 8110, 10872, 12888, 16962, 20178, 26134, 31138, 39728, 47412, 59848, 71312, 89072, 106176, 131440, 156400, 192164, 228330, 278616, 330502
OFFSET
1,2
COMMENTS
Also total sum of even parts in the partitions of n that do not contain 1 as a part.
From Omar E. Pol, Apr 09 2023: (Start)
Convolution of A002865 and A146076.
a(n) is also the total sum of even divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the sum of even terms in the n-th row of the triangle A207378.
a(n) is also the sum of even terms in the n-th row of the triangle A336812. (End)
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
FORMULA
G.f.: (Sum_{i>0} 2*i*x^(2*i)*(1-x)/(1-x^(2*i))) / Product_{i>0} (1-x^i). - Alois P. Heinz, Mar 16 2012
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - Vaclav Kotesovec, May 29 2018
MAPLE
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
[g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
fi
end:
a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Feb 12 2012
EXTENSIONS
More terms from Alois P. Heinz, Mar 16 2012
STATUS
approved