login
A146543
The LerchPhi functional part of A060187 MacMahon numbers is treated/ solved for as a curvature to give a set of polynomial triangle sequence coefficients: p(x,n)=Sum[A060187(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k].
0
2, 0, 8, 2, 20, 26, 0, 80, 224, 80, 2, 232, 1692, 1672, 242, 0, 728, 10528, 23568, 10528, 728, 2, 2172, 60678, 259688, 259758, 60636, 2186, 0, 6560, 331584, 2485344, 4674944, 2485344, 331584, 6560, 2, 19664, 1756376, 21707888, 69413420, 69413168
OFFSET
0,1
COMMENTS
The concept here is that the increase in curvature causes transformation of Pascal's triangle into the Eulerian numbers and the MacMahon numbers, while leaving the numerical Modulo 2 Sierpinski Self -Similarity intact. The resulting polynomials have a finite Blaschke elliptical structure. The row sums are: {0, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200}.
REFERENCES
Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 66, page 132.
Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer,New York,1993,pp 103 ( Herman's Rings as Finite Blaschke sets)
FORMULA
p(x,n)=Sum[A060187(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; t(n,m)=Coefficients(((x - 1)^n/x^2)*q(n,x)).
EXAMPLE
{}, {2}, {0, 8}, {2, 20, 26}, {0, 80, 224, 80}, {2, 232, 1692, 1672, 242}, {0, 728, 10528, 23568, 10528, 728}, {2, 2172, 60678, 259688, 259758, 60636, 2186}, {0, 6560, 331584, 2485344, 4674944, 2485344, 331584, 6560}, {2, 19664, 1756376, 21707888, 69413420, 69413168, 21708056, 1756304, 19682}, {0, 59048, 9116096, 178301024, 906923072, 1527092720, 906923072, 178301024,9116096, 59048}
MATHEMATICA
Clear[q, p, x, n, a]; p[x_, n_] = p[x_, n_] = (1 - x)^(n + 1)*PolyLog[ -n, x]/x; q[x_, n_] := ((x - 1)^n/x^2)*k /. Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; Table[FullSimplify[Expand[q[x, n]]], {n, 0, 10}]; Table[Flatten[CoefficientList[FullSimplify[Expand[q[x, n]]], x]], {n, 0, 10}]; Flatten[%]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Oct 31 2008
STATUS
approved