login
A146540
The PolyLog functional part of A008292 (the Eulerian numbers) is treated as a curvature to give a set of polynomial triangle sequence coefficients: p(x,n)=Sum[A008292(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k].
0
2, -1, 0, 3, -1, 2, 1, 4, -1, 0, 15, 5, 5, -1, 2, 21, 76, 16, 6, -1, 0, 63, 287, 322, 42, 7, -1, 2, 113, 1212, 2381, 1226, 99, 8, -1, 0, 255, 4265, 15675, 15549, 4349, 219, 9, -1, 2, 493, 14644, 88150, 156316, 88108, 14692, 466, 10, -1, 0, 1023, 47795, 455312
OFFSET
0,1
COMMENTS
The concept here is that the increase in curvature causes transformation of Pascal's triangle into the Eulerian numbers and the MacMahon numbers, while leaving the numerical Modulo 2 Sierpinski Self -Similarity intact. The resulting polynomials have a finite Blaschke elliptical structure. The row sums are: {0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}.
REFERENCES
Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer, New York, 1993, pp 103 ( Herman's Rings as Finite Blaschke sets)
Kenneth Hoffman, Banach Spaces of Analytic Functions, Dover, New York, 1962, page 66, page 132.
FORMULA
p(x,n)=Sum[A008292(n,m)*x^(m-1),{m,0,n}]; q(x,n)=k from Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; t(n,m)=Coefficients(((x - 1)^n/x^2)*q(n,x)).
EXAMPLE
{0}, {2, -1}, {0, 3, -1}, {2, 1, 4, -1}, {0, 15, 5, 5, -1}, {2, 21, 76,16, 6, -1}, {0, 63, 287, 322, 42, 7, -1}, {2, 113, 1212, 2381, 1226, 99, 8, -1}, {0, 255, 4265, 15675, 15549, 4349, 219, 9, -1}, {2, 493, 14644, 88150, 156316, 88108, 14692, 466, 10, -1}, {0, 1023, 47795, 455312, 1310144,1310606, 454982, 47960, 968, 11, -1}
MATHEMATICA
Clear[q, p, x, n, a]; p[x_, n_] = p[x_, n_] = (1 - x)^(n + 1)*PolyLog[ -n, x]/x; q[x_, n_] := ((x - 1)^n/x^2)*k /. Solve[FullSimplify[ExpandAll[p[x, n]/(x - 1)^n]] - (1 + k/x^2) == 0, k]; Table[FullSimplify[Expand[q[x, n]]], {n, 0, 10}]; Table[Flatten[CoefficientList[FullSimplify[Expand[q[x, n]]], x]], {n, 0, 10}]; Flatten[%]
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula, Oct 31 2008, Nov 01 2008
STATUS
approved