OFFSET
0,2
COMMENTS
In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 + x^k)) then a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt((m+1)*Pi) * n^(3/4)), where c = Pi^2/3 + 2*log(m)^2 + 4*polylog(2, -1/m).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
FORMULA
a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (4*sqrt(Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(3)^2 + 4*polylog(2, -1/3) = 4.467633549370382939364... .
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[(1+3*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Feb 06 2016
STATUS
approved