login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266821
Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).
4
1, 4, 8, 24, 44, 88, 176, 312, 544, 924, 1584, 2552, 4136, 6488, 10128, 15632, 23748, 35640, 53080, 78136, 114024, 165552, 237744, 339544, 481248, 678236, 949008, 1321840, 1830376, 2521688, 3456672, 4717208, 6406680, 8666448, 11672464, 15660528, 20934868
OFFSET
0,2
COMMENTS
Convolution of A000041 and A032308.
In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 - x^k)) then a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(m+1)*n), where c = 2*Pi^2/3 + log(m)^2 + 2*polylog(2, -1/m).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 5001 terms from Vaclav Kotesovec)
FORMULA
a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (8*Pi*n), where c = 2*Pi^2/3 + log(3)^2 + 2*polylog(2, -1/3) = 7.16861897522987077909937377164783326088308015803... .
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..44); # Alois P. Heinz, Aug 28 2019
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) { my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017
CROSSREFS
Column k=4 of A321884.
Sequence in context: A212686 A316961 A180002 * A306484 A208901 A319721
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2016
STATUS
approved