login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316961
Expansion of Product_{k>=1} 1/(1 - sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).
3
1, 1, 4, 8, 24, 42, 118, 208, 524, 961, 2191, 3994, 9020, 16142, 34500, 62814, 130496, 234474, 478334, 855982, 1712012, 3061230, 6003546, 10689178, 20783796, 36789875, 70540531, 124812892, 237022708, 417422168, 786509778, 1381137702, 2583046168, 4526024200, 8402928681
OFFSET
0,3
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} Sum_{j>=1} sigma(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Jul 28 2018: (Start)
a(n) ~ c * 3^(n/2), where
c = 133.83151651318934683776776253692818185240361972305... if n is even and
c = 131.63961163168586786976253326691345807212512512772... if n is odd.
In closed form, a(n) ~ ((3 + sqrt(3)) * Product_{k>=3} (1/(1 - sigma(k) / 3^(k/2))) + (-1)^n * (3 - sqrt(3)) * Product_{k>=3} (1/(1 - (-1)^k * sigma(k) / 3^(k/2)))) * 3^(n/2) / 4. (End)
MAPLE
with(numtheory): a:=series(mul(1/(1-sigma(k)*x^k), k=1..100), x=0, 35): seq(coeff(a, x, n), n=0..34); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 34; CoefficientList[Series[Product[1/(1 - DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 34; CoefficientList[Series[Exp[Sum[Sum[DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 17 2018
STATUS
approved