login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316960
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 220, 128, 16, 32, 512, 1498, 1498, 512, 32, 64, 2048, 10243, 16976, 10243, 2048, 64, 128, 8192, 70037, 194917, 194917, 70037, 8192, 128, 256, 32768, 478941, 2232443, 3796326, 2232443, 478941, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4..........8...........16.............32................64
...2......8.......32........128..........512...........2048..............8192
...4.....32......220.......1498........10243..........70037............478941
...8....128.....1498......16976.......194917........2232443..........25592081
..16....512....10243.....194917......3796326.......73529753........1426910760
..32...2048....70037....2232443.....73529753.....2402722112.......78728223139
..64...8192...478941...25592081...1426910760....78728223139.....4359094468163
.128..32768..3275421..293396247..27687032205..2579211359302...241311689147759
.256.131072.22400407.3363774685.537290478883.84510945441118.13360998189431905
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 6*a(n-1) +9*a(n-2) -14*a(n-3) -52*a(n-4) -33*a(n-5) for n>6
k=4: [order 16] for n>17
k=5: [order 58] for n>59
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..1. .0..0..0..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .1..0..0..0. .0..1..1..1. .1..0..0..1. .1..0..1..1
..0..0..1..0. .1..1..1..1. .1..1..1..0. .1..1..0..1. .1..0..1..1
..1..1..0..0. .0..1..1..1. .1..1..1..0. .0..1..0..0. .0..0..0..1
..1..1..1..1. .0..1..0..0. .0..1..1..1. .0..0..1..0. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A300259 A305523 A298970 * A299740 A316815 A299661
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 17 2018
STATUS
approved