login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316962
Expansion of Product_{k>=1} (1 + sigma(k)*x^k), where sigma(k) is the sum of the divisors of k (A000203).
2
1, 1, 3, 7, 11, 25, 51, 87, 129, 286, 462, 760, 1312, 2102, 3470, 5988, 8840, 13884, 22577, 33545, 55961, 85341, 126705, 194317, 293621, 435040, 641472, 971503, 1462483, 2108161, 3124489, 4474579, 6545809, 9561923, 13518678, 19809034, 28387625, 40286631, 57039233
OFFSET
0,3
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*sigma(j)^k*x^(j*k)/k).
MAPLE
with(numtheory): a:=series(mul(1+sigma(k)*x^k, k=1..100), x=0, 39): seq(coeff(a, x, n), n=0..38); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 38; CoefficientList[Series[Product[(1 + DivisorSigma[1, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 38; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) DivisorSigma[1, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d DivisorSigma[1, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 17 2018
STATUS
approved