login
A305523
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 219, 128, 16, 32, 512, 1482, 1482, 512, 32, 64, 2048, 10082, 16480, 10082, 2048, 64, 128, 8192, 68603, 186237, 186237, 68603, 8192, 128, 256, 32768, 466858, 2102155, 3536750, 2102155, 466858, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4..........8...........16.............32................64
...2......8.......32........128..........512...........2048..............8192
...4.....32......219.......1482........10082..........68603............466858
...8....128.....1482......16480.......186237........2102155..........23747613
..16....512....10082.....186237......3536750.......66949063........1269418258
..32...2048....68603....2102155.....66949063.....2122076804.......67425576120
..64...8192...466858...23747613...1269418258....67425576120.....3592436519091
.128..32768..3177374..268359015..24080732454..2143769629842...191577652761963
.256.131072.21625010.3032800805.456869647792.68172646692968.10218588450186728
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 6*a(n-1) +8*a(n-2) -10*a(n-3) -44*a(n-4) -30*a(n-5) for n>6
k=4: [order 15] for n>17
k=5: [order 58] for n>59
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..1
..1..1..0..1. .1..1..1..1. .0..0..1..0. .1..1..0..1. .0..1..1..0
..0..1..1..0. .1..1..1..0. .0..0..1..1. .1..1..1..1. .1..1..0..0
..1..1..0..0. .0..1..0..0. .1..0..0..1. .1..1..1..0. .0..0..0..1
..0..1..0..0. .1..0..0..1. .0..1..0..1. .1..0..0..0. .0..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A299746 A299668 A300259 * A298970 A316960 A299740
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 04 2018
STATUS
approved