login
A305526
Number of nX4 0..1 arrays with every element unequal to 0, 1, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
1
8, 112, 880, 7385, 61139, 506359, 4205030, 34889423, 289444806, 2401863963, 19929361422, 165362020786, 1372103130459, 11385038240794, 94467434853476, 783845435036200, 6503969010268133, 53966778475198345, 447790193058560062
OFFSET
1,1
COMMENTS
Column 4 of A305530.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) -4*a(n-2) +28*a(n-3) -411*a(n-4) +338*a(n-5) +857*a(n-6) -247*a(n-7) +155*a(n-8) -1915*a(n-9) +7665*a(n-10) -11746*a(n-11) +5851*a(n-12) -15110*a(n-13) -1432*a(n-14) +49754*a(n-15) -26190*a(n-16) +52001*a(n-17) -260844*a(n-18) +179368*a(n-19) -30268*a(n-20) -258974*a(n-21) +645731*a(n-22) -479209*a(n-23) -129902*a(n-24) -300495*a(n-25) -507419*a(n-26) +168476*a(n-27) -99617*a(n-28) +197668*a(n-29) +23175*a(n-30) +47733*a(n-31) +14282*a(n-32) +24379*a(n-33) +13120*a(n-34) +7194*a(n-35) +3784*a(n-36) -672*a(n-37) -234*a(n-38) for n>39
EXAMPLE
Some solutions for n=5
..0..0..1..1. .0..0..0..0. .0..1..1..0. .0..1..1..1. .0..1..1..0
..0..0..1..1. .0..0..0..1. .0..1..1..1. .1..1..1..0. .1..1..1..1
..0..0..0..1. .1..1..1..0. .1..1..1..0. .1..0..1..0. .0..0..1..1
..0..0..0..0. .1..1..1..0. .0..0..1..0. .0..0..1..1. .0..0..0..1
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1. .1..1..1..1
CROSSREFS
Cf. A305530.
Sequence in context: A316179 A305765 A317114 * A317000 A316818 A317568
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 04 2018
STATUS
approved