login
A305530
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 30, 30, 8, 16, 112, 161, 112, 16, 32, 420, 880, 880, 420, 32, 64, 1576, 4779, 7385, 4779, 1576, 64, 128, 5912, 26000, 61139, 61139, 26000, 5912, 128, 256, 22176, 141474, 506359, 767417, 506359, 141474, 22176, 256, 512, 83184, 769617
OFFSET
1,2
COMMENTS
Table starts
...1.....2.......4.........8..........16............32.............64
...2.....8......30.......112.........420..........1576...........5912
...4....30.....161.......880........4779.........26000.........141474
...8...112.....880......7385.......61139........506359........4205030
..16...420....4779.....61139......767417.......9599897......120736482
..32..1576...26000....506359.....9599897.....180860170.....3433486971
..64..5912..141474...4205030...120736482....3433486971....98651246976
.128.22176..769617..34889423..1516911265...65111777047..2831187189412
.256.83184.4187055.289444806.19047231319.1233566348589.81130991759635
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +4*a(n-3)
k=3: [order 11]
k=4: [order 38] for n>39
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1
..1..1..1..1. .1..1..1..0. .0..1..0..1. .0..1..1..1. .1..0..1..0
..1..1..0..1. .0..0..1..0. .1..0..0..0. .0..0..1..0. .1..1..1..0
..0..0..1..0. .0..1..1..0. .1..0..0..0. .0..0..1..0. .1..0..0..0
..0..0..1..1. .1..1..1..0. .0..1..1..0. .1..0..0..1. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A281949.
Sequence in context: A316183 A305769 A317118 * A317004 A316822 A317572
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 04 2018
STATUS
approved