login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305533
Expansion of 1/(1 - x/(1 - 1*x/(1 - 3*x/(1 - 6*x/(1 - 10*x/(1 - ... - (k*(k + 1)/2)*x/(1 - ...))))))), a continued fraction.
2
1, 1, 2, 7, 47, 592, 12287, 374857, 15639302, 851542747, 58536120467, 4953497262712, 505784457870707, 61300510121162077, 8698776162350603222, 1428545280744850604767, 268795232754158224790687, 57445320930331531152213232, 13837791987711934467999437927
OFFSET
0,3
COMMENTS
Invert transform of reduced tangent numbers (A002105).
FORMULA
a(n) ~ 2^(3*n + 2) * n^(2*n - 1/2) / (exp(2*n) * Pi^(2*n - 1/2)). - Vaclav Kotesovec, Jun 08 2019
MAPLE
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (((k - n - 1)*(k - n)) / 2) * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..18); # Peter Luschny, Oct 01 2023
MATHEMATICA
nmax = 18; CoefficientList[Series[1/(1 - x/(1 + ContinuedFractionK[-k (k + 1)/2 x, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
nmax = 18; CoefficientList[Series[1/(1 - Sum[PolyGamma[2 k - 1, 1/2]/(2^(k - 2) Pi^(2 k)) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[2^k (2^(2 k) - 1) Abs[BernoulliB[2 k]]/k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 04 2018
STATUS
approved