login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264686
Expansion of Product_{k>=1} (1 + 2*x^k)/(1 - x^k).
6
1, 3, 6, 15, 27, 51, 93, 159, 264, 432, 696, 1086, 1683, 2553, 3837, 5700, 8367, 12147, 17505, 24972, 35361, 49728, 69402, 96243, 132657, 181782, 247692, 335838, 453042, 608289, 813102, 1082256, 1434519, 1894215, 2491644, 3265869, 4265973, 5553771, 7207167
OFFSET
0,2
COMMENTS
Convolution of A000041 and A032302.
LINKS
FORMULA
a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(3)*n), where c = 2*Pi^2/3 + log(2)^2 + 2*polylog(2, -1/2) = 6.163360867463814765670634381079217086937812673723341... . - Vaclav Kotesovec, Jan 04 2016
MAPLE
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, 1, b(n, i-1)+`if`(i>n, 0, 2*b(n-i, i-1))))
end:
a:= n-> add(b(i$2)*combinat[numbpart](n-i), i=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Dec 22 2017
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) { my(n=40); Vec(prod(k=1, n, 3/(1-x^k) - 2 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 21 2015
STATUS
approved