login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).
4

%I #17 Aug 28 2019 13:51:27

%S 1,4,8,24,44,88,176,312,544,924,1584,2552,4136,6488,10128,15632,23748,

%T 35640,53080,78136,114024,165552,237744,339544,481248,678236,949008,

%U 1321840,1830376,2521688,3456672,4717208,6406680,8666448,11672464,15660528,20934868

%N Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).

%C Convolution of A000041 and A032308.

%C In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 - x^k)) then a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(m+1)*n), where c = 2*Pi^2/3 + log(m)^2 + 2*polylog(2, -1/m).

%H Alois P. Heinz, <a href="/A266821/b266821.txt">Table of n, a(n) for n = 0..10000</a> (first 5001 terms from Vaclav Kotesovec)

%F a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (8*Pi*n), where c = 2*Pi^2/3 + log(3)^2 + 2*polylog(2, -1/3) = 7.16861897522987077909937377164783326088308015803... .

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(

%p (t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..44); # _Alois P. Heinz_, Aug 28 2019

%t nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%o (PARI) { my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ _Andrew Howroyd_, Dec 22 2017

%Y Cf. A000041, A015128, A032308, A264686.

%Y Column k=4 of A321884.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Jan 04 2016