login
A206438
Triangle read by rows which lists the squares of the parts of A135010.
3
1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 4, 16, 1, 1, 1, 1, 1, 4, 9, 25, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 16, 9, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 9, 4, 25, 9, 16, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 16, 4, 9, 9, 4, 36, 9, 25
OFFSET
1,3
COMMENTS
Volumes of the parts in the section model of partitions version "boxes" in which each part of size k has a volume = k^2. Row sums of this triangle give A206440 and partial sums of A206440 give A066183.
LINKS
FORMULA
a(n) = A135010(n)^2.
EXAMPLE
Written as a triangle:
1;
1,4;
1,1,9;
1,1,1,4,4,16;
1,1,1,1,1,4,9,25;
1,1,1,1,1,1,1,4,4,4,4,16,9,9,36;
1,1,1,1,1,1,1,1,1,1,1,4,4,9,4,25,9,16,49;
MATHEMATICA
Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 8}] ^2 // Flatten (* Robert Price, May 28 2020 *)
CROSSREFS
Row n has length A138137(n).
Row sums give A206440.
Right border gives positives A000290.
Sequence in context: A055107 A297193 A272867 * A331148 A128137 A232530
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Feb 08 2012
STATUS
approved