OFFSET
1,3
COMMENTS
See A048152 for the array T[n,k] = k^2 mod n.
Starting with a(2)=1 each 4th term is odd: a(n=2+4*k) = 1, 13, 45, 77, 129, 209, 325, 365, ... - Zak Seidov, Apr 22 2009
Positions of squares in A048153: 1, 2, 33, 51, 69, 105, 195, 250, 294, 1250, 4913, 9583, 13778, 48778, 65603, 83521.
Corresponding values of squares are: {0, 1, 22, 34, 46, 70, 130, 175, 203, 875, 3468, 6734, 9711, 34481, 46308, 58956}^2 = {0, 1, 484, 1156, 2116, 4900, 16900, 30625, 41209, 765625, 12027024, 45346756, 94303521, 1188939361, 2144430864, 3475809936}. - Zak Seidov, Nov 02 2011
For n > 1 also row sums of A060036. - Reinhard Zumkeller, Apr 29 2013
LINKS
Zak Seidov, Table of n, a(n) for n = 1..10000
FORMULA
a(n) == n*(n+1)*(2n+1)/6 (mod n). - Charles R Greathouse IV, Dec 28 2011
a(n) == n*(n-1)*(2n-1)/6 (mod n). - Chai Wah Wu, Jun 02 2024
a(n) mod n = A215573(n). - Alois P. Heinz, Jun 03 2024
EXAMPLE
a(5) = 1^2 + 2^2 + (3^2 mod 5) + (4^2 mod 5) + (5^2 mod 5) = 1 + 4 + 4 + 1 + 0 = 10. (It is easily seen that the last term, n^2 mod n, is always zero and would not need to be included.) - M. F. Hasler, Oct 21 2013
MATHEMATICA
Table[Sum[PowerMod[k, 2, n], {k, n-1}], {n, 1, 10000}] (* Zak Seidov, Nov 02 2011 *)
PROG
(Haskell)
a048153 = sum . a048152_row -- Reinhard Zumkeller, Apr 29 2013
(PARI) a(n)=sum(k=1, n, k^2%n) \\ Charles R Greathouse IV, Oct 21 2013
(Python)
def A048153(n): return sum(k**2%n for k in range(1, n)) # Chai Wah Wu, Jun 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition made more explicit by M. F. Hasler, Oct 21 2013
STATUS
approved