|
|
A048152
|
|
Triangular array T read by rows: T(n,k) = k^2 mod n, for 1 <= k <= n, n >= 1.
|
|
17
|
|
|
0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 4, 4, 1, 0, 1, 4, 3, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 4, 0, 7, 7, 0, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 3, 12, 10, 10, 12, 3, 9, 4, 1, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,12
|
|
LINKS
|
T. D. Noe, Rows n = 1..100 of triangle, flattened
Eric Weisstein's World of Mathematics, Quadratic Residue
|
|
FORMULA
|
T(n,k) = A133819(n,k) mod n, k = 1..n. - Reinhard Zumkeller, Apr 29 2013
T(n,k) = (T(n,k-1) + (2k+1)) mod n. - Andrés Ventas, Apr 06 2021
|
|
EXAMPLE
|
Rows:
0;
1, 0;
1, 1, 0;
1, 0, 1, 0;
1, 4, 4, 1, 0;
1, 4, 3, 4, 1, 0;
|
|
MATHEMATICA
|
Flatten[Table[PowerMod[k, 2, n], {n, 15}, {k, n}]] (* Harvey P. Dale, Jun 20 2011 *)
|
|
PROG
|
(Haskell)
a048152 n k = a048152_tabl !! (n-1) !! (k-1)
a048152_row n = a048152_tabl !! (n-1)
a048152_tabl = zipWith (map . flip mod) [1..] a133819_tabl
-- Reinhard Zumkeller, Apr 29 2013
|
|
CROSSREFS
|
Cf. A060036.
Cf. A225126 (central terms).
Cf. A070430 (row 5), A070431 (row 6), A053879 (row 7), A070432 (row 8), A008959 (row 10), A070435 (row 12), A070438 (row 15), A070422 (row 20).
Cf. A046071 (in ascending order, without zeros and duplicates).
Cf. A063987 (for primes, in ascending order, without zeros and duplicates).
Sequence in context: A260043 A185057 A343720 * A350037 A070430 A336302
Adjacent sequences: A048149 A048150 A048151 * A048153 A048154 A048155
|
|
KEYWORD
|
nonn,tabl,nice,easy
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|