login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} (k^2 mod n).
14

%I #47 Jun 03 2024 10:20:14

%S 0,1,2,2,10,13,14,12,24,45,44,38,78,77,70,56,136,129,152,130,182,209,

%T 184,148,250,325,288,294,406,365,372,304,484,561,490,402,666,665,572,

%U 540,820,805,860,726,840,897,846,680,980,1125,1156,1170,1378,1305,1210

%N a(n) = Sum_{k=1..n} (k^2 mod n).

%C See A048152 for the array T[n,k] = k^2 mod n.

%C Starting with a(2)=1 each 4th term is odd: a(n=2+4*k) = 1, 13, 45, 77, 129, 209, 325, 365, ... - _Zak Seidov_, Apr 22 2009

%C Positions of squares in A048153: 1, 2, 33, 51, 69, 105, 195, 250, 294, 1250, 4913, 9583, 13778, 48778, 65603, 83521.

%C Corresponding values of squares are: {0, 1, 22, 34, 46, 70, 130, 175, 203, 875, 3468, 6734, 9711, 34481, 46308, 58956}^2 = {0, 1, 484, 1156, 2116, 4900, 16900, 30625, 41209, 765625, 12027024, 45346756, 94303521, 1188939361, 2144430864, 3475809936}. - _Zak Seidov_, Nov 02 2011

%C For n > 1 also row sums of A060036. - _Reinhard Zumkeller_, Apr 29 2013

%H Zak Seidov, <a href="/A048153/b048153.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) == n*(n+1)*(2n+1)/6 (mod n). - _Charles R Greathouse IV_, Dec 28 2011

%F a(n) == n*(n-1)*(2n-1)/6 (mod n). - _Chai Wah Wu_, Jun 02 2024

%F a(n) mod n = A215573(n). - _Alois P. Heinz_, Jun 03 2024

%e a(5) = 1^2 + 2^2 + (3^2 mod 5) + (4^2 mod 5) + (5^2 mod 5) = 1 + 4 + 4 + 1 + 0 = 10. (It is easily seen that the last term, n^2 mod n, is always zero and would not need to be included.) - _M. F. Hasler_, Oct 21 2013

%t Table[Sum[PowerMod[k,2,n], {k,n-1}], {n,1,10000}] (* _Zak Seidov_, Nov 02 2011 *)

%o (Haskell)

%o a048153 = sum . a048152_row -- _Reinhard Zumkeller_, Apr 29 2013

%o (PARI) a(n)=sum(k=1,n,k^2%n) \\ _Charles R Greathouse IV_, Oct 21 2013

%o (Python)

%o def A048153(n): return sum(k**2%n for k in range(1,n)) # _Chai Wah Wu_, Jun 02 2024

%Y Cf. A000330, A048152, A215573.

%K nonn

%O 1,3

%A _Clark Kimberling_

%E Definition made more explicit by _M. F. Hasler_, Oct 21 2013