login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003609
Symmetries in planted (1,3) trees on 2n vertices.
(Formerly M0383)
10
1, 2, 2, 10, 14, 42, 90, 354, 758, 2290, 6002, 18410, 51310, 154106, 449322, 1384962, 4089174, 12475362, 37746786, 116037642, 355367310, 1097869386, 3393063162, 10546081122, 32810171382, 102465452754, 320522209490, 1005428474218
OFFSET
1,2
REFERENCES
Kathleen A. McKeon, The expected number of symmetries in locally-restricted trees I, pp. 849-860 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Sean A. Irvine, Java program (github)
Kathleen A. McKeon, The expected number of symmetries in locally-restricted trees I, pp. 849-860 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991. [Annotated scanned copy]
EXAMPLE
G.f. = x + 2*x^2 + 2*x^3 + 10*x^4 + 14*x^5 + 42*x^6 + 90*x^7 + ... - Michael Somos, Mar 12 2021
PROG
(PARI) {a(n) = my(A, m); A = x + O(x^2); m = 1; while(n >= (m*=2), A = (1 - sqrt(1 - 2*x*y + y*(y-2)*substvec(A, [x, y], [x^2, y^2])))/y); 2^(n-1) * subst(polcoeff(A, n), y, 1/2)}; /* Michael Somos, Mar 12 2021 */
CROSSREFS
Sequence in context: A048153 A015623 A164124 * A366131 A307538 A316200
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Feb 24 2019
STATUS
approved