login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003606 a(n) = number of types of conjugacy classes in GL(n,q) (this is independent of q).
(Formerly M3340)
2
1, 4, 8, 22, 42, 103, 199, 441, 859, 1784, 3435, 6882, 13067, 25366, 47623, 90312, 167344, 311603, 570496, 1045896, 1893886, 3426466, 6140824, 10984249, 19499214, 34526844, 60758733, 106613119, 186099976, 323883380, 561141244, 969308408 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..500

J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., 80 (1955), 402-447.

N. J. A. Sloane, Transforms

R. Steinberg, A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. Math. Soc., 71 (1951), 274-282.

FORMULA

G.f.: Product_{k >= 1} f(x^k)^p_k, where f(x)=Product_{k >= 0} 1/(1-x^k) = Sum_{k >= 0} p_k*x^k and p_k is the number of partitions of k (A000041).

Recurrence relation: a(n+1) = 1/(n+1) * Sum_{k=0..n} a(k)*g(n-k+1) where g(n) = Sum_{ij | n} p(i)*i*j, with the sum over all ordered pairs (i, j) such that their products divide n and p(i) is the number of partitions of i. Also a(0)=1. - Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

Euler transform of A047968(n). - Vladeta Jovovic, Jun 23 2004

Recurrence relation: a(0)=1, a(n+1) = 1/(n+1) * Sum_{k=0..n} a(k)*g(n-k+1) where g(n) = Sum_{d | n} d * A000041(d) * A000203(n/d). - Brett Witty (witty(AT)maths.anu.edu.au), Jul 12 2006

EXAMPLE

a(2) = 4 as there are four types of conjugacy classes of 2 X 2 matrices over GF(q):

* the scalar matrices (diagonal matrix with both entries the same)

* the direct sum of two scalars (diagonal matrix with both entries different)

* the non-diagonalizable Jordan block (upper triangular matrix with the same entry along the diagonal and a 1 in the superdiagonal)

* companion matrices of irreducible quadratics over GF(q)

This example can be found in Green's paper (in the references).

MATHEMATICA

m = 32; f[x_] = Product[1/(1-x^k), {k, 1, m}]; gf[x_] = Product[f[x^k]^PartitionsP[k], {k, 1, m}]; Drop[ CoefficientList[ Series[gf[x], {x, 0, m}], x], 1] (* Jean-Fran├žois Alcover, Aug 01 2011, after g.f. *)

PROG

(GAP) a := function(n) local k, sum; sum := 0; for k in [0..n-1] do sum := sum + a(k)*g(n-k); od; return sum/n; end;

g := function(n) local i, j, sum; for i in DivisorsInt(n) do for j in DivisorsInt(n/i) do sum := sum + NrPartitions(i)*i*j; od; od; return sum; end;;

# This code is significantly faster if you store previously computed values of a(n) and g(n).

# Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

(GAP) a := function(n) if( n = 0) then return 1; else return Sum([0..n], i -> t(i) * Sum(DivisorsInt(n-i), d -> d * NrPartitions(d) * Sigma(n/d)) )/n; fi; end;; # Brett Witty (witty(AT)maths.anu.edu.au), Jul 12 2006

CROSSREFS

Cf. A001970.

Cf. A006951, A006952, A049314, A049315, A049316.

Sequence in context: A050482 A200149 A153765 * A048657 A175655 A000639

Adjacent sequences:  A003603 A003604 A003605 * A003607 A003608 A003609

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

More terms from Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 05:50 EDT 2018. Contains 316519 sequences. (Running on oeis4.)