login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003606 a(n) = number of types of conjugacy classes in GL(n,q) (this is independent of q).
(Formerly M3340)
2

%I M3340 #36 Sep 19 2023 08:20:35

%S 1,4,8,22,42,103,199,441,859,1784,3435,6882,13067,25366,47623,90312,

%T 167344,311603,570496,1045896,1893886,3426466,6140824,10984249,

%U 19499214,34526844,60758733,106613119,186099976,323883380,561141244,969308408

%N a(n) = number of types of conjugacy classes in GL(n,q) (this is independent of q).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A003606/b003606.txt">Table of n, a(n) for n = 1..500</a>

%H J. A. Green, <a href="https://doi.org/10.1090/S0002-9947-1955-0072878-2">The characters of the finite general linear groups</a>, Trans. Amer. Math. Soc., 80 (1955), 402-447.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%H R. Steinberg, <a href="https://doi.org/10.1090/S0002-9947-1951-0043784-0">A geometric approach to the representations of the full linear group over a Galois field</a>, Trans. Amer. Math. Soc., 71 (1951), 274-282.

%F G.f.: Product_{k >= 1} f(x^k)^p_k, where f(x) = Product_{k >= 0} 1/(1-x^k) = Sum_{k >= 0} p_k*x^k and p_k is the number of partitions of k (A000041).

%F Recurrence relation: a(n+1) = (1/(n+1)) * Sum_{k=0..n} a(k)*g(n-k+1) where g(n) = Sum_{i*j | n} p(i)*i*j, with the sum over all ordered pairs (i, j) such that their products divide n and p(i) is the number of partitions of i. Also a(0)=1. - Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

%F Euler transform of A047968(n). - _Vladeta Jovovic_, Jun 23 2004

%F Recurrence relation: a(0)=1, a(n+1) = (1/(n+1)) * Sum_{k=0..n} a(k)*g(n-k+1) where g(n) = Sum_{d | n} d * A000041(d) * A000203(n/d). - Brett Witty (witty(AT)maths.anu.edu.au), Jul 12 2006

%e a(2) = 4 as there are four types of conjugacy classes of 2 X 2 matrices over GF(q):

%e * the scalar matrices (diagonal matrix with both entries the same)

%e * the direct sum of two scalars (diagonal matrix with both entries different)

%e * the non-diagonalizable Jordan block (upper triangular matrix with the same entry along the diagonal and a 1 in the superdiagonal)

%e * companion matrices of irreducible quadratics over GF(q)

%e This example can be found in Green's paper (in the references).

%t m = 32; f[x_] = Product[1/(1-x^k), {k, 1, m}]; gf[x_] = Product[f[x^k]^PartitionsP[k], {k, 1, m}]; Drop[ CoefficientList[ Series[gf[x], {x, 0, m}], x], 1] (* _Jean-François Alcover_, Aug 01 2011, after g.f. *)

%o (GAP) a := function(n) local k,sum; sum := 0; for k in [0..n-1] do sum := sum + a(k)*g(n-k); od; return sum/n; end;

%o g := function(n) local i,j,sum; for i in DivisorsInt(n) do for j in DivisorsInt(n/i) do sum := sum + NrPartitions(i)*i*j; od; od; return sum; end;;

%o # This code is significantly faster if you store previously computed values of a(n) and g(n).

%o # Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

%o (GAP) a := function(n) if( n = 0) then return 1; else return Sum([0..n], i -> t(i) * Sum(DivisorsInt(n-i), d -> d * NrPartitions(d) * Sigma(n/d)) )/n; fi; end;; # Brett Witty (witty(AT)maths.anu.edu.au), Jul 12 2006

%Y Cf. A001970.

%Y Cf. A006951, A006952, A049314, A049315, A049316.

%K nonn,nice,easy

%O 1,2

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 10:11 EDT 2024. Contains 371935 sequences. (Running on oeis4.)