login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Symmetries in planted (1,3) trees on 2n vertices.
(Formerly M0383)
10

%I M0383 #23 Mar 12 2021 16:50:00

%S 1,2,2,10,14,42,90,354,758,2290,6002,18410,51310,154106,449322,

%T 1384962,4089174,12475362,37746786,116037642,355367310,1097869386,

%U 3393063162,10546081122,32810171382,102465452754,320522209490,1005428474218

%N Symmetries in planted (1,3) trees on 2n vertices.

%D Kathleen A. McKeon, The expected number of symmetries in locally-restricted trees I, pp. 849-860 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a003/A003609.java">Java program</a> (github)

%H Kathleen A. McKeon, <a href="/A003609/a003609.pdf">Letter to N. J. A. Sloane, July 25 1991</a>

%H Kathleen A. McKeon, <a href="/A003609/a003609_1.pdf">The expected number of symmetries in locally-restricted trees I</a>, pp. 849-860 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991. [Annotated scanned copy]

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%e G.f. = x + 2*x^2 + 2*x^3 + 10*x^4 + 14*x^5 + 42*x^6 + 90*x^7 + ... - _Michael Somos_, Mar 12 2021

%o (PARI) {a(n) = my(A, m); A = x + O(x^2); m = 1; while(n >= (m*=2), A = (1 - sqrt(1 - 2*x*y + y*(y-2)*substvec(A, [x, y], [x^2, y^2])))/y); 2^(n-1) * subst(polcoeff(A, n), y, 1/2)}; /* _Michael Somos_, Mar 12 2021 */

%K nonn

%O 1,2

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from _Sean A. Irvine_, Feb 24 2019