OFFSET
-1,3
COMMENTS
Also McKay-Thompson series of class 27B for the Monster group.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = -1..10000 (terms -1..1000 from G. C. Greubel)
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of T9B(q)/(1 - 3*T9B(q)/(6 + T9B(q^3))), where T9B(q) = A058091 and T9B(q^3) = T9B(q -> q^3), in powers of q. - G. C. Greubel, Jun 22 2018
a(n) ~ exp(4*Pi*sqrt(n/3)/3) / (sqrt(2) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T27A = 1/q +3*q +5*q^2 +9*q^3 +12*q^4 +20*q^5 +27*q^6 +42*q^7 +...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax := 100; B:= (eta[q^6]/eta[q^3])*(eta[q^9]/eta[q^18])^3; T9B := B + 4/(B)^2; A:= T9B/(6 + (T9B/.{q -> q^3})) ; a:= CoefficientList[Series[q*T9B/(1 - 3*A + O[q]^nmax), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 22 2018 *)
PROG
(PARI) q='q+O('q^50); B = (eta(q^6)/eta(q^3))*(eta(q^9)/eta(q^18))^3/q; B3 = (eta(q^18)/eta(q^9))*(eta(q^27)/eta(q^54))^3/q^3; T9B = B + 4/B^2; T9B3 = B3 + 4/(B3)^2; A = T9B/(6 + T9B3); Vec(T9B/(1 - 3*A)) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved