|
|
A084593
|
|
Least positive integers, all distinct, that satisfy Sum_{n>0} 1/a(n)^z = 0, where z is the 100th nontrivial zero of the Riemann zeta function: z = (1/2 + i*y) with y=236.5242296658162058024755...
|
|
6
|
|
|
1, 3, 5, 9, 12, 23, 28, 46, 86, 92, 101, 108, 125, 161, 177, 205, 257, 282, 318, 331, 344, 358, 363, 368, 373, 388, 426, 456, 475, 535, 542, 564, 587, 595, 619, 644, 670, 716, 745, 775, 806, 838, 849, 884, 920, 957, 995, 1008, 1049, 1091, 1135, 1181, 1228, 1243
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Sequence satisfies Sum_{n>0} 1/a(n)^z = 0 by requiring that the modulus of the successive partial sums are monotonically decreasing in magnitude to zero for the given z.
|
|
LINKS
|
Table of n, a(n) for n=1..54.
Andrew M. Odlyzko, The first 100 (nontrivial) zeros of the Riemann Zeta function.
Index entries for zeta function.
|
|
PROG
|
(PARI) S=0; w=1; a=0; for(n=1, 100, b=a+1; while(abs(S+exp(-z*log(b)))>w, b++); S=S+exp(-z*log(b)); w=abs(S); a=b; print1(b, ", "))
|
|
CROSSREFS
|
Cf. A084588, A084589, A084590, A084591, A084592.
Sequence in context: A058599 A238662 A059093 * A275843 A161866 A102968
Adjacent sequences: A084590 A084591 A084592 * A084594 A084595 A084596
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Jun 04 2003
|
|
STATUS
|
approved
|
|
|
|