login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084594
a(n) = Sum_{r=0..2^(n-1)} Binomial(2^n,2r)*3^r.
1
1, 4, 28, 1552, 4817152, 46409906716672, 4307758882900393634270543872, 37113573186414494550922197215584520229965687291643953152
OFFSET
0,2
COMMENTS
a(n)/A084595(n) converges to sqrt(3). Related to Newton's iteration.
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
Eric Weisstein's World of Mathematics, Newton's Iteration.
FORMULA
a(n) = ( (1+sqrt(3))^(2^n) + (1-sqrt(3))^(2^n) )/2.
a(n) = A026150(2^n).
a(n) = 2*a(n-1)^2 - A001146(n-1), n>1.
a(n) = a(n-1)^2 + 3*A084595(n-1)^2.
MATHEMATICA
Table[Sum[Binomial[2^n, 2 r]3^r, {r, 0, 2^(n - 1)}], {n, 0, 8}]
Table[Simplify[Expand[(1/2) ((1 + Sqrt[3])^(2^n) + (1 - Sqrt[3])^(2^n))]], {n, 0, 7}] (* Artur Jasinski, Oct 11 2008 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), May 31 2003
STATUS
approved