login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336622
a(n) = Sum_{k=0..n} Sum_{i=0..k} Sum_{j=0..i} (binomial(n,k) * binomial(k,i) * binomial(i,j))^n.
1
1, 4, 28, 1192, 591460, 3441637504, 219272057247376, 185528149944660881488, 2405748000504972140803769860, 349789137657321307953339196885516144, 652520795984468974632890750361094911319873648
OFFSET
0,2
LINKS
FORMULA
a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^4.
MATHEMATICA
Table[Sum[Sum[Sum[(Binomial[n, k] Binomial[k, i] Binomial[i, j])^n, {j, 0, i}], {i, 0, k}], {k, 0, n}], {n, 0, 10}]
Table[(n!)^n SeriesCoefficient[Sum[x^k/(k!)^n, {k, 0, n}]^4, {x, 0, n}], {n, 0, 10}]
PROG
(Magma) B:=Binomial; [(&+[(&+[(&+[(B(n, j)*B(n-j, k-j)*B(k-j, k-i))^n: j in [0..i]]): i in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
(SageMath)
b=binomial
def A336622(n): return sum(sum(sum( (b(n, j)*b(n-j, k-j)*b(k-j, k-i))^n for j in (0..i)) for i in (0..k)) for k in (0..n))
[A336622(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 29 2020
STATUS
approved