OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..42
FORMULA
a(n) = (n!)^n * [x^n] (Sum_{k>=0} x^k / (k!)^n)^4.
MATHEMATICA
Table[Sum[Sum[Sum[(Binomial[n, k] Binomial[k, i] Binomial[i, j])^n, {j, 0, i}], {i, 0, k}], {k, 0, n}], {n, 0, 10}]
Table[(n!)^n SeriesCoefficient[Sum[x^k/(k!)^n, {k, 0, n}]^4, {x, 0, n}], {n, 0, 10}]
PROG
(Magma) B:=Binomial; [(&+[(&+[(&+[(B(n, j)*B(n-j, k-j)*B(k-j, k-i))^n: j in [0..i]]): i in [0..k]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 31 2022
(SageMath)
b=binomial
def A336622(n): return sum(sum(sum( (b(n, j)*b(n-j, k-j)*b(k-j, k-i))^n for j in (0..i)) for i in (0..k)) for k in (0..n))
[A336622(n) for n in (0..20)] # G. C. Greubel, Aug 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 29 2020
STATUS
approved