login
A354842
a(n) is the smallest number k such that A354841(k) = n.
2
1, 4, 28, 1276, 9430, 463446, 24786396, 1340301868
OFFSET
0,2
COMMENTS
Equivalently, the smallest integer k such that the number of primes between k and k+log(k), exclusive, is n.
EXAMPLE
In the interval ]28; 28+log(28)[ = ]28; 31.332...[, there are two primes 29 and 31 and this is the first such interval with 2 primes, hence a(2) = 28.
MATHEMATICA
seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = Count[Range[n + 1, n + Log[n]], _?PrimeQ] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[5, 10^5] (* Amiram Eldar, Jun 25 2022 *)
CROSSREFS
Cf. A354840 (similar, but between k and k+log(k)^2), A354841.
Sequence in context: A203279 A081792 A336622 * A084594 A334598 A000838
KEYWORD
nonn,more
AUTHOR
Bernard Schott, Jun 24 2022
EXTENSIONS
a(3)-a(5) from Alois P. Heinz, Jun 25 2022
a(6) from Amiram Eldar, Jun 25 2022
a(7) from David Consiglio, Jr., Jun 29 2022
STATUS
approved