login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000838 Number of n-input 2-output switching networks under action of complementing group on the inputs and outputs.
(Formerly M3629 N1474)
1
4, 28, 2272, 67170304, 144115192236605440, 1329227995784915891062320757838184448, 226156424291633194186662080095093570363541849729447858357132587076662853632 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

M. A. Harrison, On the number of classes of switching networks, J. Franklin Instit., 276 (1963), 313-327.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..7.

Index entries for sequences related to switching networks

FORMULA

a(n)=2^(2^(n+1)-2-n)+2^(2^n)-2^(2^n-n). [Sean A. Irvine, Jul 14 2011]

G.f.: A(x) = G(0) - 1 ; G(k) = 1 + (8*2^k -8 + 8^2^k*x*G(k+1))/2^(2^k+1) - Sergei N. Gladkovskii, Dec 02 2011 [edited by Michael Somos, Sep 07 2013]

EXAMPLE

G.f. = 4*x + 28*x^2 + 2272*x^3 + 67170304*x^4 + 144115192236605440*x^5 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, 2^(2^(n + 1) - 2 - n) + 2^2^n - 2^(2^n - n)]; (* Michael Somos, Aug 17 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, 2^(2^(n+1) - 2 - n) + 2^(2^n) - 2^(2^n - n))}; /* Michael Somos, Sep 07 2013 */

CROSSREFS

Cf. A000133, A000839.

Sequence in context: A203279 A081792 A084594 * A218174 A220756 A202713

Adjacent sequences:  A000835 A000836 A000837 * A000839 A000840 A000841

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Feb 26 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 05:54 EDT 2019. Contains 328045 sequences. (Running on oeis4.)