login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000838
Number of n-input 2-output switching networks under action of complementing group on the inputs and outputs.
(Formerly M3629 N1474)
1
4, 28, 2272, 67170304, 144115192236605440, 1329227995784915891062320757838184448, 226156424291633194186662080095093570363541849729447858357132587076662853632
OFFSET
1,1
REFERENCES
M. A. Harrison, On the number of classes of switching networks, J. Franklin Instit., 276 (1963), 313-327.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = 2^(2^(n+1) - 2 - n) + 2^(2^n) - 2^(2^n-n). - Sean A. Irvine, Jul 14 2011
G.f.: A(x) = G(0) - 1; G(k) = 1 + (8*2^k - 8 + 8^2^k*x*G(k+1))/2^(2^k+1). - Sergei N. Gladkovskii, Dec 02 2011 [edited by Michael Somos, Sep 07 2013]
EXAMPLE
G.f. = 4*x + 28*x^2 + 2272*x^3 + 67170304*x^4 + 144115192236605440*x^5 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, 2^(2^(n + 1) - 2 - n) + 2^2^n - 2^(2^n - n)]; (* Michael Somos, Aug 17 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, 2^(2^(n+1) - 2 - n) + 2^(2^n) - 2^(2^n - n))}; /* Michael Somos, Sep 07 2013 */
CROSSREFS
Sequence in context: A354842 A084594 A334598 * A218174 A220756 A202713
KEYWORD
easy,nonn
EXTENSIONS
More terms from Vladeta Jovovic, Feb 26 2000
STATUS
approved