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1. INTRODUCTION
Lot Xy, Xy, X3, **- be a sequence of natural numbers satisfying a nonlinear recur-
n
of such sequences are given, srising from Boolean functions, graph theory, language theory,
eutorsata theory, and number theory. By an elementary method it is shewn that the solution
Is x = nearest integer to K%, for n 2 ng, where k is a congtant. That is, these are

rence of the form x ., = X} + E,r Whers |gn| < ixn for n 2 np. Numerous examples

doubly exponential sequences. In some cases k is a "'known" conatant (guch as %[1 +4'5)),
hut in general the formula for k invalves xp, X, Xg, <* ¢!

%. EXAMPLES GF DOUBLY EXPONENTIAL SEQUENCES
2.1 BOOLEAN FUNCTIONS
The simplest example is defined by

(1) X4 =X D Z0h K =2

so that the sequence is 2, 4, 16, 258, 65536, 4294987296, -+« and X, = 22 This is the
number of Boolean functions of n variables ([12], p. 47) or equivaiently the number of
ways of coloring the vertices of an n-dimensional cube with two colora.

2.2 ENUMERATING PLANAR TREES BY HEIGHT

The recurrence
(2} xn+1=x;+1, nz 0 x =1

generates the sequence 1, 2, 5, 26, 677, 458330, 210066388301, ---. This ariaes, for ex-
ample, in the enumeration of planar hinary trees.

We assume the reader knows what a rooted free ([10]} is. {The drawings below are of
rooted trees.) A binary rooted iree is a rooted tree in which the root node has degree 2 and
all other nodes have degree 1 or 3 (or else is the trivial tree consisting of the root node
alone}. A planar binary rooked bree is a particular embedding of a binary rooted tree in the
plane. .

The height of a rooted tree ia the maximum length of 8 path from any node to the root.

For example hexe ave the planar binary rooted frees of heights ¢, 1 and 2. (Here the

root 1s drawn at the bottom. )
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Let X, be tha number of planar hinary rooted trees of height at most n, so that x; =
1, %y = 2, X = 6. Deleting the root node either leaves the emptytree or two trees of height
at most # -1, frovm which it follows that X, gatisfles (2).

Planar binary rooted trees arise In a variety of splitting processes. We give thres
illustrations.

a. In parsing certain context-free languages [1]. [13], [18). For example, consider

a context-free grammar G with two productions N—+NK and N—»t where N ig a

nenterminal and t a terminel symbol. Derivation trees for the senténces t and

are ghown below.® Deleting the terminal symbois

N

N
t | I

t t

and their adjacent edges converis & derivation tree into 2 planar binary rooted tree.
Thug X, Tepresents the number of derivation trees for G of height at most o + 1.

h. Using the natural correspondence {[4], Vol. 1, p. &B) between planar binary rooted
trees and the parenthesizing of asentence, x te the number of ways of parentheslzing
a string of aymbols of any length so that the parentheses are nested to depth at mast n.
¢, I, in a plapnar binary rooted tree, we write 2 ¢ when the path branches to the leit
and a 1 when the path branches to the right, the set of all patha from the raol to the
nodes of degree 1 formg & variable length binary code ([7]). Thus x ig the number
of variable length binary codes of maximum length at most n.

2.3 THE RECURRENCE

&Y X =xt -1, n 20 x5 = 3

generntes the sequence 2, 3, 8, 63, 3968, 16745023, 247905749270528, - - -

2.4 THE RECURRENCE
@) Youp =¥ =¥yt L nZ L oy =2

generates the sequence 32, 3, 7, 43, 1807, 3203448, 10650056950807, ---. This sequence
occurs (a) in Lucag’ test for the primality of Mersenne numbers ([11], p. 233) and (b) in
apgproximating numbers by sums of reciprocals. Any positive real number y < 1 admits &
unique expangicn of the form

*In language theory, it is customary to draw trees with the root at the top.
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where the y; are integers sv chousen that after i terms, when the sum 8, has been ob-
tained, Fi41 ig the least integer such that 8 + 1/‘yi 1 does not exceed y ([16]). It follows
that Yied = yi -y + €i' €i 2 1, The most slowly converging such seriea ia

A
13

=+ =+ o

Dol
W=
=] b=

when el = 1 for i 2 1, this converges to 1, and the denvminabors satisfy (4}, Recurrence
{4) 19 a special case of the next example.

2.5 GOLOMB'S NONLINEAR RECURRENCES

For r =1, 2, -, Golomb [9] has defined a sequence {}_;r)] by

5) y3 = e Wan nzw -1,
Equivalent definitions are

Ygr) = 1, }'(r) = v+ 1

2

) - (y;r]) ey er, 0z1
and

Ygr) =1, 3'}1') =r+1

2

(7} YEII‘EI = (Yr(lr} - P) +{@e -pH nZ1,
where p = =

2

From (6) [y:jll)] ig the sequence of example 2.4, The Fermat numbers are yf ). The
sequences [1’512)] - [}'I(ls)] begin:

1, 3, 9, 17, 257, 65537, 4294967297, - - -
1, 4, 7, 31, 871, 758031, 571580604471, + -
1, G, 9, 49, 2209, 4870849, 23726150497409, -- -

1, 6, 11, 71, 4691, 21982021, 4832055769745811, « -

(Note that the value of y§3) given in [9] is incorrect.)
The subsiftution x = yff} -4, nz 1, converis (7) to
(8) Kwg =X+l -p), 02 & x5 = {1+p?

n+1

2.6 TIIE RECURRENCE

) Sy = Bl -V, mZzo1
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generates the sequence 1, 2, 4, 24, 1104, 2435424, 11862575248704, * -+, which algo arises
in approximating numbers by sumg of reciprocals [16]. The substitution Z, %2y, -1, nZ
1, converts (9) to
X = ~NT,
= - >

(10) 41 = %% o200
Sequences generated by (10} with different initial values are also used in primality testing.
With the initial value x;, = 3 we obtain the sequence 3, 7, 47, 3207, 4870847, 2372515049740%,

([17], p. 280), and with x; = 4 the sequence 4, 14, 194, 37634, 1416317954, - - (f13].

2.7 THE RECURRENCE’

Yo = 1, ¥ = 2

@1 yn-}l = yfl = yill-l' nzi

generates the sequence 1, 2, 3, 5, 16, 231, 53105, 2820087864, ***. In [3] it was glven as
& puzzle to guess the recurrence satisfied hy thig sequence,
The subgtitution X =¥, -1}, n > ¢, converts (11) to

(12) x = -x -x

n-32 n=-2

1
XD = ';'. Xi = lv}, Xa = 21

3. SOLVING THE RECURRENCES

Recurrences {1)-(8), (9), (16} and {12} all have the form

{13) X4 = xf} +tg, na 0

with beundary conditlions, and are such that

(i} X >

{ii) |gn| <-}xn and 1S x for nZmn and
(iii) g, satisfies condition (18) below.

let

&y
Yy = logxn, a4 = logl 1 +;-a-
n

Then by taking logarithma of (18) we obtain

(14) hJ

ntl T 2V, Y e, B2 0.

n

For any sequence {ufn}, the solution of (14} is (see for example [15], p. 26)
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oy oy &
I n-1
.Yn_=2(yn+-.2-+—+...+ n)

gt 2
= Yn - l'n L3

where

o«

I (| n=1-i
Y o= 2y + 2

i=0

(15)

o
_ n-1-1_
Tn = 22 “
i=n
Asguming that the g, are such that

{16) |an| z | for ¢ 2 ny ,

C¥n+1l

it follows from (15) that |rn| = |ceul. ‘Then

- n = n n = n
(17 X e e Xe .
where . Yn .
(18) Xn = @ = K2 ;
(-]
19) k = xpexp Z 2-1-101 ”
i=
Also
r 2|
X =xeM= xe B
n n
2(g |
<xn(+ z for n 2 n ,
e

2lg |
=xu+ Kn
and
-|o
X 2x9|p|2x(l—ﬁ)=x —@
o n n 2 D X
% n

TFrom a2gsumption (ii), this meang that
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Ixn_xnl <4 fornz .

If x  1saninteger, as in recarrences (1)-{3), (8} for r even, and (10}, then the solution to
the recurrence {13} is
(20) X = nearest infeger to k",  for n 2 ng

while 1f Xy is balf an odd integer, as in (8) for r odd and (12), the solution is

(21) x = {nearest integer to K ++)-%, fornz2 g,
where k is given by (13).

Note that if g 18 alwayd positive, then @y = 0, r, = % X~ x . and (20) may be
replaced by
(22) x, = ("] for n 2 mny,

where [a] denotes the integer part of a. Similarly if g, is always negative then X < x
and
(23) x = (% for n 2 Ny s
where [a] denotes the smallest integer Za.

In some cages {see below} k turns out to be a 'known' congtant (such as 1}(1 + N2
But in general Egs. (20)-(23) are not legitimate solutlona to the recurrence (13), since the
only way we have to calculate k involves knowing the terme of the seguence. Nevertheless,
they accurately describe the usymptotic hehavior of the geguence.

We now apply this result to the preceding examples. For all except 2.7 the proofs al
properties (1i} and (1ii) are by an easy induction, and are omitted.

FExampls 2.1,

Here g =0, k =2 and {20) correctly gives the solution X, = 22,

Example 2.2.

Condltion (ii} holds for ny = 2, and {{ii} reguires X ix

a1’ which is immadiate.
From (20) x = [k] for n Z 1, where

-
]

1 i >, 1 26 . 1 677
exp(glogz + ILOgZ-—} Elog_5+ﬁl°gs_'m + )

1.502837 .- -

The comparison of k¥ with x is as follows:

(1]

n 0 1 2 23 4
Xy 1 2 > 26 677 58330

kY 130284 2.25852 5.10091  26.0192d4  G77.00074  455330.00000
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Lxample 2.3 is similar, and x = (K"] where k = 1.678459 ---.

Example 2.5.
It ig found that {i1) is valid for ny =1 U r =1 andfor n; = 3 if r > 3, The solu-

tion of (5) for r = 1 (and of example 2.4) is

s =k 4], w=o,
and for »r = 3 is

¥
a

(r) _ n,r
where k ig given by (19). The first few values of k are ag follows.

r 1 3 4 &
k  ).264085  1.526526 1.618034  1.696094

For r = 4, the value of k is seen to be very ¢lose to the "golden ratio'
@ = 7(1 + NFB) = 1.6180339887 + -

In fact we may take kK = ¢ for

3'}4) =2

s'r{:fl = @’:,4) -2, n=z1

19 solved exacily by

yﬁn =+ 42, noe=1,

and so

s =™ 2], =1,

(This was pointed out to ug by D. E. Knuth.) 8a far, none of the other values of k have heen
identified. Golomb [9] hag studied the solution of (5) by a different method.

Exame_{e 3.0,

The golution to (9) 1a
¥, = [é[] +k™M] forn =1,

where k = J.613034 -«+, and again, as pointed out by D. E. Knuth, we may take

k=9 =3U+35),
since
x, = ¢ e, a=0

solves (10) exaclly. A aimilar exact soluton can be given for {10) for any initial value xj.
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Exampée 2.7,

This i& the eoely example for which {ii} and (ill) are not immedinte. Bounds on X, and
y, are first established by induction:

22]1—2'1 -

-xniyn‘zgnz for n = 4
then
:|_(x +j]2_2__ _2
En N2 2 z n-2 = 1
and
@B-8-1 o o 5 ™3 0 n=v

It is now easy to show that (ii) and (iii) hold for n =ny = 5. The solution is

Yn:[k-zn'*'%]» n=1,
where k = 1.185306 -,

EXERCISES

The tachnigue may sometimes be applied to recurrences not having the form of (13).
We invite the reader fo tackle the following.

(0 Vup = Yo - 5¥, wm =y =3,

which generates the sequence 3, 18, 5778, 182800153618, - -~ used in a rapid method of ex-
tractng a gquare root ([5]}.

&) o = 1. ¥y = 3

Vel T Yn¥pyp T = ?
which generates the sequence 1, 3, 4, 13, 63, 630, 26671, 25233991, 9328322848632, +++ ([2]).

(3} Yo 1

1

Ypeg " Ho v ¥o¥o £ F 0¥y, =D

which generates the sequence 1, 1, 2, 4, 132, 108, 10476, 1038625644, 117983926B0793836, *-*.

{‘” y|}=1

srn+1=:”3121"}.3"?1"'1’ m=

which generatesthe segquenca 1, 3, 12, 1B3, 33673, 11338064603, - -+, the coefficients of the
leaat rapidly converging continued caotangent ([14]).

(5) Vg = 3
Yoor = @+ D5 n =0
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which generates the sequence 1, 4, 25, €76, 458329, 2100883958300, --- {[8]).
Vel = 3i+2yn(y0+y1+--- +yn_1}, n=1.

which generates the sequence 1, 1, 3, 21, 651, 457653, 210065330571, -+, arising in the
enumeration of shapes {[6]).
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