login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{r=0..2^(n-1)} Binomial(2^n,2r)*3^r.
1

%I #17 Apr 07 2021 02:49:57

%S 1,4,28,1552,4817152,46409906716672,4307758882900393634270543872,

%T 37113573186414494550922197215584520229965687291643953152

%N a(n) = Sum_{r=0..2^(n-1)} Binomial(2^n,2r)*3^r.

%C a(n)/A084595(n) converges to sqrt(3). Related to Newton's iteration.

%H A. V. Aho and N. J. A. Sloane, <a href="https://www.fq.math.ca/Scanned/11-4/aho-a.pdf">Some doubly exponential sequences</a>, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, <a href="http://neilsloane.com/doc/doubly.html">alternative link</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/NewtonsIteration.html">Newton's Iteration</a>.

%F a(n) = ( (1+sqrt(3))^(2^n) + (1-sqrt(3))^(2^n) )/2.

%F a(n) = A026150(2^n).

%F a(n) = 2*a(n-1)^2 - A001146(n-1), n>1.

%F a(n) = a(n-1)^2 + 3*A084595(n-1)^2.

%t Table[Sum[Binomial[2^n, 2 r]3^r, {r, 0, 2^(n - 1)}], {n, 0, 8}]

%t Table[Simplify[Expand[(1/2) ((1 + Sqrt[3])^(2^n) + (1 - Sqrt[3])^(2^n))]], {n, 0, 7}] (* _Artur Jasinski_, Oct 11 2008 *)

%Y Cf. A001146, A026150, A084595,

%K easy,nonn

%O 0,2

%A Mario Catalani (mario.catalani(AT)unito.it), May 31 2003