OFFSET
1,2
COMMENTS
Sequence satisfies: Sum_{n>0} 1/a(n)^z = 0 by requiring that the modulus of the successive partial sums are monotonically decreasing in magnitude to zero for the given z.
LINKS
MATHEMATICA
Reap[For[z = ZetaZero[1]; S = 0; w = 1; a = 0; n = 1, n <= 100, n++, b = a + 1; While[Abs[S + Exp[-z*Log[b]]] > w, b++]; S = S + Exp[-z*Log[b]]; w = Abs[S]; a = b; Print[b]; Sow[b]]][[2, 1]] (* Jean-François Alcover, Oct 22 2019, from PARI *)
PROG
(PARI) S=0; w=1; a=0; for(n=1, 100, b=a+1; while(abs(S+exp(-z*log(b)))>w, b++); S=S+exp(-z*log(b)); w=abs(S); a=b; print1(b, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 03 2003
STATUS
approved