login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319143
G.f. A(x) satisfies: [x^(n-1)] (1+x)^(n^3) / A(x)^(n^2) = 0 for n>1.
0
1, 2, 5, 190, 24444, 6189050, 2551526428, 1545212826174, 1288051774444110, 1412705106844118046, 1971892031185697252554, 3413903325218336008192250, 7181500581229611492081984526, 18048175081484797766245697300090, 53425898749319275351535742806432314, 184046820557885265127311961578368691278, 730192327635057505047728578528016106455194
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 190*x^3 + 24444*x^4 + 6189050*x^5 + 2551526428*x^6 + 1545212826174*x^7 + 1288051774444110*x^8 + ...
The table of coefficients of x^k in (1+x)^(n^3) / A(x)^(n^2) begins:
n=1: [1, -1, -3, -179, -23881, -6115379, -2532879873, ...];
n=2: [1, 0, -16, -728, -96144, -24548304, -10154627640, ...];
n=3: [1, 9, 0, -1878, -231876, -57206466, -23347565964, ...];
n=4: [1, 32, 432, 0, -472008, -111871136, -43940424080, ...];
n=5: [1, 75, 2675, 55475, 0, -199916560, -76768966500, ...];
n=6: [1, 144, 10152, 460056, 13896684, 0, -126293662512, ...];
n=7: [1, 245, 29694, 2364152, 137272471, 5735706025, 0, ...]; ...
in which the n-th term in row n forms a diagonal of zeros after an initial '1'.
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n+1, A=concat(A, 0); A[m] = Vec( (1+x +x*O(x^n))^(m^3)/Ser(A)^(m^2) )[m]/m^2 ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A303060.
Sequence in context: A013130 A111392 A226071 * A100366 A339313 A012975
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 18 2018
STATUS
approved